Department of Chemistry, University of Kentucky, Lexington Kentucky 40506, United States.
Department of Biomedical Engineering, University of Kentucky, Lexington Kentucky 40506, United States.
ACS Appl Mater Interfaces. 2023 Sep 20;15(37):43607-43620. doi: 10.1021/acsami.3c10025. Epub 2023 Sep 12.
Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.
优化候选药物的生物利用度对于成功的药物开发活动至关重要,特别是对于金属衍生的化疗药物。可以部署纳米颗粒递送策略来克服与药物相关的物理化学限制,以提高生物利用度、药代动力学、疗效,并最大程度地降低毒性。可生物降解的白蛋白纳米结构为金属药物的药物递送提供了切实可行的解决方案,在临床上具有转化效益。在这项工作中,我们探索了一种合乎逻辑的方法来研究和解决金(III)配合物与白蛋白纳米颗粒递送相关的物理化学缺陷,以提高溶解度、增强细胞内积累、避免过早失活,并增强抗癌活性。我们合成并表征了稳定的金(III)二硫代氨基甲酸盐配合物,其具有不同程度的环金属化,例如苯吡啶(C^N)或联苯(C^C)Au(III)骨架和不同的烷基链长度。我们注意到,烷基链长度的延长会降低这些配合物在生物介质中的溶解度,从而对其效力产生不利影响。将这些配合物包封在牛血清白蛋白(BSA)中可以逆转溶解度限制,并将癌症细胞毒性提高约 25 倍。进一步的形态分析和作用机制研究分别证明了化合物的稳定性和线粒体生物能学的改变。我们假设这种纳米递药策略是一种用于转化小分子金药物递送的相关方法。