Restrepo-Coupe Natalia, O'Donnell Christoffersen Bradley, Longo Marcos, Alves Luciana F, Campos Kleber Silva, da Araujo Alessandro C, de Oliveira Raimundo C, Prohaska Neill, da Silva Rodrigo, Tapajos Raphael, Wiedemann Kenia T, Wofsy Steven C, Saleska Scott R
Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA.
School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.
Glob Chang Biol. 2023 Nov;29(21):6077-6092. doi: 10.1111/gcb.16933. Epub 2023 Sep 12.
Understanding the effects of intensification of Amazon basin hydrological cycling-manifest as increasingly frequent floods and droughts-on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest "tipping points". Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001-2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015-2016 El Niño drought and La Niña 2008-2009 wet events. We found that the forest responded strongly to El Niño-Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). Partitioning ET by an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress-induced reductions in canopy conductance (G ) drove T declines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higher T and lower E, with little change in seasonal ET. Both El Niño-Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet-season leaf area index. However, only during El Niño 2015-2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown of G and significant leaf shedding). Drought-reduced T and G , higher H and E, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post-drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin-scale threshold-crossing changes in forest energy and water cycling, leading to slow-down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.
了解亚马逊河流域水文循环加剧(表现为洪水和干旱日益频繁)对热带森林水和能量循环的影响,对于应对预测生态系统对气候变化的响应(包括森林“临界点”)这一挑战至关重要。在此,我们利用12年多(2001年至2020年)来自涡度协方差的水和能量通量观测数据,以及塔帕若斯国家森林生物测量的相关生态动态,研究了极端水文事件对森林功能的影响。测量涵盖了2015 - 2016年强烈的厄尔尼诺干旱和2008 - 2009年拉尼娜湿润事件。我们发现森林对厄尔尼诺 - 南方涛动(ENSO)反应强烈:干旱减少了用于蒸散(ET)的可用水量,导致感热通量(H)大幅增加。通过一种假设蒸腾作用(T)与光合作用成正比的方法对ET进行划分,我们发现水分胁迫导致的冠层导度(G)下降推动了T的下降,部分被较高的蒸发(E)所补偿。相比之下,异常湿润的拉尼娜时期T较高而E较低,季节性ET变化不大。这两个厄尔尼诺 - 南方涛动(ENSO)事件都导致了森林结构的变化,表现为湿季叶面积指数降低。然而,仅在2015 - 2016年厄尔尼诺期间,我们观察到由于植被功能减缓(通过G的关闭和大量落叶),蒸腾通量的强气象控制(通过能量可用性和大气需求)出现了崩溃。干旱导致T和G降低,H和E升高,再加上较高温度和水汽压差的反馈作用增强,表明森林功能已越过一个阈值,干旱后恢复缓慢且有延迟。在局部尺度上识别这种临界点的起始(超过此点未来可能会发生不可逆转的过程)对于预测流域尺度上森林能量和水循环越过阈值的变化至关重要,这种变化会导致森林功能减缓,有可能使亚马逊森林转变为其他退化状态。