Fortuin Brigette Althea, Otegi Jon, López Del Amo Juan Miguel, Peña Sergio Rodriguez, Meabe Leire, Manzano Hegoi, Martínez-Ibañez María, Carrasco Javier
Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
Department of Physics, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
Phys Chem Chem Phys. 2023 Sep 20;25(36):25038-25054. doi: 10.1039/d3cp02989a.
Model validation of a well-known class of solid polymer electrolyte (SPE) is utilized to predict the ionic structure and ion dynamics of alternative alkali metal ions, leading to advancements in Na-, K-, and Cs-based SPEs for solid-state alkali metal batteries. A comprehensive study based on molecular dynamics (MD) is conducted to simulate ion coordination and the ion transport properties of poly(ethylene oxide) (PEO) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt across various LiTFSI concentrations. Through validation of the MD simulation results with experimental techniques, we gain a deeper understanding of the ionic structure and dynamics in the PEO/LiTFSI system. This computational approach is then extended to predict ion coordination and transport properties of alternative alkali metal ions. The ionic structure in PEO/LiTFSI is significantly influenced by the LiTFSI concentration, resulting in different lithium-ion transport mechanisms for highly concentrated or diluted systems. Substituting lithium with sodium, potassium, and cesium reveals a weaker cation-PEO coordination for the larger cesium-ion. However, sodium-ion based SPEs exhibit the highest cation transport number, indicating the crucial interplay between salt dissociation and cation-PEO coordination for achieving optimal performance in alkali metal SPEs.
利用对一类著名的固体聚合物电解质(SPE)进行模型验证来预测替代碱金属离子的离子结构和离子动力学,从而推动用于固态碱金属电池的基于钠、钾和铯的SPE取得进展。开展了一项基于分子动力学(MD)的全面研究,以模拟聚环氧乙烷(PEO)与双(三氟甲磺酰)亚胺锂(LiTFSI)盐在不同LiTFSI浓度下的离子配位和离子传输特性。通过用实验技术验证MD模拟结果,我们对PEO/LiTFSI体系中的离子结构和动力学有了更深入的理解。然后将这种计算方法扩展到预测替代碱金属离子的离子配位和传输特性。PEO/LiTFSI中的离子结构受LiTFSI浓度的显著影响,导致高浓度或稀释体系中锂离子的传输机制不同。用钠、钾和铯取代锂后发现,较大的铯离子与PEO的阳离子配位较弱。然而,基于钠离子的SPE表现出最高的阳离子迁移数,这表明盐解离和阳离子与PEO的配位之间的关键相互作用对于在碱金属SPE中实现最佳性能至关重要。