通过对聚合物和锂盐进行化学调控,深入了解固体聚合物电解质中载流子的传输和形态的分子水平洞察。
Molecular-Level Insight into Charge Carrier Transport and Speciation in Solid Polymer Electrolytes by Chemically Tuning Both Polymer and Lithium Salt.
作者信息
Fortuin Brigette A, Meabe Leire, Peña Sergio Rodriguez, Zhang Yan, Qiao Lixin, Etxabe Julen, Garcia Lorena, Manzano Hegoi, Armand Michel, Martínez-Ibañez María, Carrasco Javier
机构信息
Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510Vitoria-Gasteiz, Spain.
Department of Physics, University of the Basque Country (UPV/EHU), 48940Leioa, Spain.
出版信息
J Phys Chem C Nanomater Interfaces. 2023 Jan 24;127(4):1955-1964. doi: 10.1021/acs.jpcc.2c07032. eCollection 2023 Feb 2.
The advent of Li-metal batteries has seen progress toward studies focused on the chemical modification of solid polymer electrolytes, involving tuning either polymer or Li salt properties to enhance the overall cell performance. This study encompasses chemically modifying simultaneously both polymer matrix and lithium salt by assessing ion coordination environments, ion transport mechanisms, and molecular speciation. First, commercially used lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is taken as a reference, where F atoms become partially substituted by one or two H atoms in the -CF moieties of LiTFSI. These substitutions lead to the formation of lithium(difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide (LiDFTFSI) and lithium bis(difluoromethanesulfonyl)imide (LiDFSI) salts. Both lithium salts promote anion immobilization and increase the lithium transference number. Second, we show that exchanging archetypal poly(ethylene oxide) (PEO) with poly(ε-caprolactone) (PCL) significantly changes charge carrier speciation. Studying the ionic structures of these polymer/Li salt combinations (LiTFSI, LiDFTFSI or LiDFSI with PEO or PCL) by combining molecular dynamics simulations and a range of experimental techniques, we provide atomistic insights to understand the solvation structure and synergistic effects that impact macroscopic properties, such as Li conductivity and transference number.
锂金属电池的出现促使人们在固体聚合物电解质的化学改性研究方面取得了进展,这涉及调整聚合物或锂盐的性质以提高电池的整体性能。本研究通过评估离子配位环境、离子传输机制和分子形态,同时对聚合物基体和锂盐进行化学改性。首先,以商业上使用的双(三氟甲烷磺酰)亚胺锂(LiTFSI)盐为参考,其中LiTFSI的-CF部分中的F原子被一个或两个H原子部分取代。这些取代导致形成锂(二氟甲烷磺酰)(三氟甲烷磺酰)亚胺(LiDFTFSI)和双(二氟甲烷磺酰)亚胺锂(LiDFSI)盐。这两种锂盐都促进阴离子固定并提高锂迁移数。其次,我们表明用聚(ε-己内酯)(PCL)取代典型的聚环氧乙烷(PEO)会显著改变电荷载流子的形态。通过结合分子动力学模拟和一系列实验技术研究这些聚合物/Li盐组合(LiTFSI、LiDFTFSI或LiDFSI与PEO或PCL)的离子结构,我们提供了原子层面的见解,以理解影响宏观性质(如Li电导率和迁移数)的溶剂化结构和协同效应。
相似文献
J Phys Chem C Nanomater Interfaces. 2023-1-24
ACS Appl Mater Interfaces. 2024-9-18
ACS Appl Mater Interfaces. 2020-9-9
本文引用的文献
Phys Chem Chem Phys. 2022-7-6
Polymers (Basel). 2021-11-26
Micromachines (Basel). 2021-8-26
J Phys Chem Lett. 2021-3-25
Angew Chem Int Ed Engl. 2019-8-26