Suppr超能文献

使用潜在类别分析和机器学习技术识别韩国单人家庭中代谢综合征的风险群体及影响因素:二次分析研究

Identification of Risk Groups for and Factors Affecting Metabolic Syndrome in South Korean Single-Person Households Using Latent Class Analysis and Machine Learning Techniques: Secondary Analysis Study.

作者信息

Lee Ji-Soo, Lee Soo-Kyoung

机构信息

Department of Nursing, Gimcheon University, Gimcheon-si, Republic of Korea.

Big Data Convergence and Open Sharing System, Seoul National University, Seoul, Republic of Korea.

出版信息

JMIR Form Res. 2023 Sep 12;7:e42756. doi: 10.2196/42756.

Abstract

BACKGROUND

The rapid increase of single-person households in South Korea is leading to an increase in the incidence of metabolic syndrome, which causes cardiovascular and cerebrovascular diseases, due to lifestyle changes. It is necessary to analyze the complex effects of metabolic syndrome risk factors in South Korean single-person households, which differ from one household to another, considering the diversity of single-person households.

OBJECTIVE

This study aimed to identify the factors affecting metabolic syndrome in single-person households using machine learning techniques and categorically characterize the risk factors through latent class analysis (LCA).

METHODS

This cross-sectional study included 10-year secondary data obtained from the National Health and Nutrition Examination Survey (2009-2018). We selected 1371 participants belonging to single-person households. Data were analyzed using SPSS (version 25.0; IBM Corp), Mplus (version 8.0; Muthen & Muthen), and Python (version 3.0; Plone & Python). We applied 4 machine learning algorithms (logistic regression, decision tree, random forest, and extreme gradient boost) to identify important factors and then applied LCA to categorize the risk groups of metabolic syndromes in single-person households.

RESULTS

Through LCA, participants were classified into 4 groups (group 1: intense physical activity in early adulthood, group 2: hypertension among middle-aged female respondents, group 3: smoking and drinking among middle-aged male respondents, and group 4: obesity and abdominal obesity among middle-aged respondents). In addition, age, BMI, obesity, subjective body shape recognition, alcohol consumption, smoking, binge drinking frequency, and job type were investigated as common factors that affect metabolic syndrome in single-person households through machine learning techniques. Group 4 was the most susceptible and at-risk group for metabolic syndrome (odds ratio 17.67, 95% CI 14.5-25.3; P<.001), and obesity and abdominal obesity were the most influential risk factors for metabolic syndrome.

CONCLUSIONS

This study identified risk groups and factors affecting metabolic syndrome in single-person households through machine learning techniques and LCA. Through these findings, customized interventions for each generational risk factor for metabolic syndrome can be implemented, leading to the prevention of metabolic syndrome, which causes cardiovascular and cerebrovascular diseases. In conclusion, this study contributes to the prevention of metabolic syndrome in single-person households by providing new insights and priority groups for the development of customized interventions using classification.

摘要

背景

韩国单人家庭数量的迅速增加,正导致代谢综合征发病率上升,由于生活方式的改变,代谢综合征会引发心血管和脑血管疾病。考虑到单人家庭的多样性,有必要分析韩国单人家庭中代谢综合征风险因素的复杂影响,这些因素因家庭而异。

目的

本研究旨在使用机器学习技术确定影响单人家庭代谢综合征的因素,并通过潜在类别分析(LCA)对风险因素进行分类表征。

方法

这项横断面研究纳入了从国家健康与营养检查调查(2009 - 2018年)获得的10年二级数据。我们选取了1371名属于单人家庭的参与者。使用SPSS(版本25.0;IBM公司)、Mplus(版本8.0;Muthen & Muthen)和Python(版本3.0;Plone & Python)对数据进行分析。我们应用4种机器学习算法(逻辑回归、决策树、随机森林和极端梯度提升)来确定重要因素,然后应用LCA对单人家庭中代谢综合征的风险组进行分类。

结果

通过LCA,参与者被分为4组(第1组:成年早期高强度体育活动,第2组:中年女性受访者中的高血压,第3组:中年男性受访者中的吸烟和饮酒,第4组:中年受访者中的肥胖和腹型肥胖)。此外,通过机器学习技术,对年龄、体重指数(BMI)、肥胖、主观体型认知、饮酒、吸烟、暴饮频率和工作类型等作为影响单人家庭代谢综合征的常见因素进行了调查。第4组是代谢综合征最易感和高危组(优势比17.67,95%置信区间14.5 - 25.3;P <.001),肥胖和腹型肥胖是代谢综合征最具影响力的风险因素。

结论

本研究通过机器学习技术和LCA确定了单人家庭中影响代谢综合征的风险组和因素。通过这些发现,可以针对代谢综合征的每个代际风险因素实施定制干预措施,从而预防导致心血管和脑血管疾病的代谢综合征。总之,本研究通过为使用分类法制定定制干预措施提供新见解和优先群体,为预防单人家庭中的代谢综合征做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cc5/10523223/60ea7b875122/formative_v7i1e42756_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验