Liu Aodong, Zhang Tianyuan, Hammes-Schiffer Sharon, Li Xiaosong
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
J Chem Theory Comput. 2023 Sep 26;19(18):6255-6262. doi: 10.1021/acs.jctc.3c00686. Epub 2023 Sep 12.
The Cholesky decomposition technique is commonly used to reduce the memory requirement for storing two-particle repulsion integrals in quantum chemistry calculations that use atomic orbital bases. However, when quantum methods use multicomponent bases, such as nuclear-electronic orbitals, additional challenges are introduced due to asymmetric two-particle integrals. This work proposes several multicomponent Cholesky decomposition methods for calculations using nuclear-electronic orbital density functional theory. To analyze the errors in different Cholesky decomposition components, benchmark calculations using water clusters are carried out. The largest benchmark calculation is a water cluster (HO) where all 54 protons are treated quantum mechanically. This study provides energetic and complexity analyses to demonstrate the accuracy and performance of the proposed multicomponent Cholesky decomposition method.
在使用原子轨道基组的量子化学计算中,Cholesky分解技术通常用于减少存储两粒子排斥积分所需的内存。然而,当量子方法使用多组分基组(如核电子轨道)时,由于不对称的两粒子积分会带来额外的挑战。这项工作提出了几种用于核电子轨道密度泛函理论计算的多组分Cholesky分解方法。为了分析不同Cholesky分解分量中的误差,使用水团簇进行了基准计算。最大的基准计算是一个水团簇(H₂O)₅₄,其中所有54个质子都用量子力学方法处理。本研究提供了能量和复杂度分析,以证明所提出的多组分Cholesky分解方法的准确性和性能。