Cao Li, Zheng Min, Dong Guochen, Xu Jiejie, Xiao Rongshi, Huang Ting
High-Power and Ultrafast Laser Manufacturing Lab, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China.
Small. 2024 Jan;20(3):e2305265. doi: 10.1002/smll.202305265. Epub 2023 Sep 12.
Nanosilicon (nano-Si) anode is subjected to significant stress concentration, which is caused by extrusion deformation of expanded Si nanoparticles with uneven distribution. The low-strength binder and adhesive interface are unable to withstand the stress, resulting in exfoliation and impeding the use of nano-Si anodes. This work aims to mitigate stress in a Si anode with flexible copper (Cu) skeletons that are metallurgically bonded to uniformly distributed Si nanoparticles. It is worth noting that the proposed porous Si-Cu anode exhibits improved high-load cycling performance and promising potential in the full cell, with an energy density of 463 Wh kg at 0.5 C and retention of 81% after 500 cycles at 2 C. Chemo-mechanical simulation and in (ex) situ observation demonstrate that expansion stress is reduced and more evenly distributed in the anode due to uniform distribution of Si nanoparticles, flexible Cu skeletons, and adequate pores. More importantly, the stress is primarily distributed in the flexible Cu skeletons and bonding interface, preventing anode exfoliation, and ensuring efficient lithium ion/electron transference. This work sheds light on the structure construction of an alloy-type anode.
纳米硅(nano-Si)阳极会受到显著的应力集中,这是由分布不均的膨胀硅纳米颗粒的挤压变形引起的。低强度粘结剂和粘结界面无法承受这种应力,导致剥落,阻碍了纳米硅阳极的使用。这项工作旨在通过与均匀分布的硅纳米颗粒冶金结合的柔性铜(Cu)骨架来减轻硅阳极中的应力。值得注意的是,所提出的多孔硅-铜阳极在全电池中表现出改善的高负载循环性能和有前景的潜力,在0.5 C下能量密度为463 Wh kg,在2 C下500次循环后保持率为81%。化学-力学模拟和原位(外)观察表明,由于硅纳米颗粒的均匀分布、柔性铜骨架和足够的孔隙,阳极中的膨胀应力降低且分布更均匀。更重要的是,应力主要分布在柔性铜骨架和粘结界面中,防止阳极剥落,并确保锂离子/电子的高效转移。这项工作为合金型阳极的结构构建提供了思路。