Suppr超能文献

基于混合神经动力学和人类行为的未知模型机器人操纵器的预定义时间收敛运动控制

Predefined-Time Convergent Kinematic Control of Robotic Manipulators With Unknown Models Based on Hybrid Neural Dynamics and Human Behaviors.

作者信息

Tan Ning, Yu Peng

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):18026-18038. doi: 10.1109/TNNLS.2023.3310744. Epub 2024 Dec 2.

Abstract

This article proposes a model-free kinematic control method with predefined-time convergence for robotic manipulators with unknown models. The predefined-time convergence property guarantees that the regulation task can be finished by robotic manipulators in a preset time, in spite of the initial state of manipulators. This feature will facilitate the scheduling of a series of tasks in industrial applications. To this end, a varying-parameter predefined-time convergent zeroing neural dynamics (ZND) model is first proposed and employed to solve the regulation problem. As well as the primary task, a conventional ZND model is utilized to achieve the avoidance of obstacle. The stability of the proposed controller is analyzed based on the Lyapunov stability theory. For the sake of dealing with the unknown kinematic model of robotic manipulators, gradient neural dynamics (GND) models are exploited to adapt the Jacobian matrices just relying on the control signal and sensory output, which enables us to control robotic manipulators in a model-free manner. Finally, the efficacy and merits of the proposed control method are verified by simulations and experiments, including a comparison with the existing method.

摘要

本文针对模型未知的机器人机械手,提出了一种具有预定义时间收敛性的无模型运动控制方法。预定义时间收敛特性保证了机器人机械手无论初始状态如何,都能在预设时间内完成调节任务。这一特性将有助于工业应用中一系列任务的调度。为此,首先提出并采用了一种变参数预定义时间收敛归零神经动力学(ZND)模型来解决调节问题。除了主要任务外,还利用传统的ZND模型来实现避障。基于李雅普诺夫稳定性理论分析了所提出控制器的稳定性。为了处理机器人机械手未知的运动学模型,利用梯度神经动力学(GND)模型仅依靠控制信号和传感输出对雅可比矩阵进行自适应,从而使我们能够以无模型的方式控制机器人机械手。最后,通过仿真和实验验证了所提出控制方法的有效性和优点,包括与现有方法的比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验