Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA.
Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
Nat Commun. 2023 Sep 13;14(1):5637. doi: 10.1038/s41467-023-41374-8.
Both proteome and transcriptome data can help assess the relevance of non-coding somatic mutations in cancer. Here, we combine mass spectrometry-based proteomics data with whole genome sequencing data across 1307 human tumors spanning various tissues to determine the extent somatic structural variant (SV) breakpoint patterns impact protein expression of nearby genes. We find that about 25% of the hundreds of genes with SV-associated cis-regulatory alterations at the mRNA level are similarly associated at the protein level. SVs associated with enhancer hijacking, retrotransposon translocation, altered DNA methylation, or fusion transcripts are implicated in protein over-expression. SVs combined with altered protein levels considerably extend the numbers of patients with tumors somatically altered for critical pathways. We catalog both SV breakpoint patterns involving patient survival and genes with nearby SV breakpoints associated with increased cell dependency in cancer cell lines. Pan-cancer proteogenomics identifies targetable non-coding alterations, by virtue of the associated deregulated genes.
蛋白质组和转录组数据均可帮助评估癌症中非编码体细胞突变的相关性。在这里,我们将基于质谱的蛋白质组学数据与涵盖各种组织的 1307 个人类肿瘤的全基因组测序数据相结合,以确定体细胞结构变异 (SV) 断点模式对附近基因蛋白表达的影响程度。我们发现,在 mRNA 水平上与 SV 相关的顺式调控改变的数百个基因中,约有 25%在蛋白质水平上也有类似的关联。与增强子劫持、逆转录转座子易位、改变的 DNA 甲基化或融合转录本相关的 SV 与蛋白过表达相关。与改变的蛋白水平相关的 SV 极大地扩展了肿瘤中关键通路发生体细胞改变的患者数量。我们对涉及患者生存的 SV 断点模式以及与癌细胞系中细胞依赖性增加相关的附近 SV 断点基因进行了编目。泛癌症的蛋白质基因组学通过相关的失调基因来识别可靶向的非编码改变。