Suppr超能文献

一种用于康复医学中文命名实体识别的BERT跨度模型。

A BERT-Span model for Chinese named entity recognition in rehabilitation medicine.

作者信息

Zhong Jinhong, Xuan Zhanxiang, Wang Kang, Cheng Zhou

机构信息

School of Management, Hefei University of Technology, Hefei, Anhui, China.

出版信息

PeerJ Comput Sci. 2023 Aug 21;9:e1535. doi: 10.7717/peerj-cs.1535. eCollection 2023.

Abstract

BACKGROUND

Due to various factors such as the increasing aging of the population and the upgrading of people's health consumption needs, the demand group for rehabilitation medical care is expanding. Currently, China's rehabilitation medical care encounters several challenges, such as inadequate awareness and a scarcity of skilled professionals. Enhancing public awareness about rehabilitation and improving the quality of rehabilitation services are particularly crucial. Named entity recognition is an essential first step in information processing as it enables the automated extraction of rehabilitation medical entities. These entities play a crucial role in subsequent tasks, including information decision systems and the construction of medical knowledge graphs.

METHODS

In order to accomplish this objective, we construct the BERT-Span model to complete the Chinese rehabilitation medicine named entity recognition task. First, we collect rehabilitation information from multiple sources to build a in the field of rehabilitation medicine, and fine-tune Bidirectional Encoder Representation from Transformers (BERT) with the rehabilitation medicine . For the rehabilitation medicine , we use BERT to extract the feature vectors of rehabilitation medicine entities in the text, and use the span model to complete the annotation of rehabilitation medicine entities.

RESULT

Compared to existing baseline models, our model achieved the highest F1 value for the named entity recognition task in the rehabilitation medicine . The experimental results demonstrate that our method outperforms in recognizing both long medical entities and nested medical entities in rehabilitation medical texts.

CONCLUSION

The BERT-Span model can effectively identify and extract entity knowledge in the field of rehabilitation medicine in China, which supports the construction of the knowledge graph of rehabilitation medicine and the development of the decision-making system of rehabilitation medicine.

摘要

背景

由于人口老龄化加剧、人们健康消费需求升级等多种因素,康复医疗的需求群体正在扩大。目前,中国康复医疗面临着一些挑战,如认知不足和专业技术人员短缺。提高公众对康复的认知并改善康复服务质量尤为关键。命名实体识别是信息处理中至关重要的第一步,因为它能够自动提取康复医学实体。这些实体在后续任务中发挥着关键作用,包括信息决策系统和医学知识图谱的构建。

方法

为了实现这一目标,我们构建了BERT-Span模型来完成中文康复医学命名实体识别任务。首先,我们从多个来源收集康复信息,以构建康复医学领域的[具体内容缺失],并用康复医学[具体内容缺失]对双向编码器表征来自变换器(BERT)进行微调。对于康复医学[具体内容缺失],我们使用BERT提取文本中康复医学实体的特征向量,并使用跨度模型完成康复医学实体的标注。

结果

与现有的基线模型相比,我们的模型在康复医学[具体内容缺失]命名实体识别任务中获得了最高的F1值。实验结果表明,我们的方法在识别康复医学文本中的长医学实体和嵌套医学实体方面表现更优。

结论

BERT-Span模型能够有效识别和提取中国康复医学领域的实体知识,支持康复医学知识图谱的构建和康复医学决策系统的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c938/10495977/1ec4ee26157c/peerj-cs-09-1535-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验