Lin Jianxin, Zhong Shiliang, Shen Jianqi
J Opt Soc Am A Opt Image Sci Vis. 2023 Jun 1;40(6):1201-1207. doi: 10.1364/JOSAA.491597.
The radial quadrature method was recently proposed for formulating the beam shape coefficients (BSCs) for shaped beams. A new deduction of BSCs using the R-quadrature method is presented in this paper, using the integral of the spherical Bessel functions in the interval ranging from zero to infinity. Based on the scalar description of the Bessel beam, the equivalence between the R-quadrature and the finite series (FS) method is confirmed. The spherical wave expansion of the scalar function allows us to simplify the formulation of the BSCs in the R-quadrature and the FS and to speed up the numerical BSC calculation. As a by-product, FS expansions of the associated Legendre functions are established, which we do not find in the literature.
径向求积法是最近提出的用于确定成形光束的光束形状系数(BSCs)的方法。本文提出了一种使用R求积法对BSCs进行新的推导,该推导利用了从零到无穷大区间内的球贝塞尔函数积分。基于贝塞尔光束的标量描述,证实了R求积法与有限级数(FS)法之间的等效性。标量函数的球面波展开使我们能够简化R求积法和FS法中BSCs的公式,并加快BSC的数值计算。作为一个副产品,建立了相关勒让德函数的FS展开式,这在文献中尚未发现。