Marine Laboratory, University of Guam, Mangilao, Guam, United States of America.
PLoS One. 2023 Sep 14;18(9):e0290649. doi: 10.1371/journal.pone.0290649. eCollection 2023.
Endosymbiotic dinoflagellates (Family Symbiodiniaceae) are the primary producer of energy for many cnidarians, including corals. The intricate coral-dinoflagellate symbiotic relationship is becoming increasingly important under climate change, as its breakdown leads to mass coral bleaching and often mortality. Despite methodological progress, assessing the phenotypic traits of Symbiodiniaceae in-hospite remains a complex task. Bio-optics, biochemistry, or "-omics" techniques are expensive, often inaccessible to investigators, or lack the resolution required to understand single-cell phenotypic states within endosymbiotic dinoflagellate assemblages. To help address this issue, we developed a protocol that collects information on cell autofluorescence, shape, and size to simultaneously generate phenotypic profiles for thousands of Symbiodiniaceae cells, thus revealing phenotypic variance of the Symbiodiniaceae assemblage to the resolution of single cells. As flow cytometry is adopted as a robust and efficient method for cell counting, integration of our protocol into existing workflows allows researchers to acquire a new level of resolution for studies examining the acclimation and adaptation strategies of Symbiodiniaceae assemblages.
内共生甲藻(Symbiodiniaceae 科)是许多刺胞动物(包括珊瑚)的主要能量生产者。在气候变化下,这种复杂的珊瑚-甲藻共生关系变得越来越重要,因为其破裂会导致大规模珊瑚白化,并且通常会导致珊瑚死亡。尽管在方法学上取得了进展,但评估共生甲藻的表型特征仍然是一项复杂的任务。生物光学、生物化学或“组学”技术昂贵,往往无法为研究人员所获得,或者缺乏解析度来理解内共生甲藻组合内的单细胞表型状态。为了解决这个问题,我们开发了一种方案,该方案收集细胞自发荧光、形状和大小的信息,以便同时为数千个共生甲藻细胞生成表型谱,从而揭示共生甲藻组合的表型变异性达到单细胞的解析度。由于流式细胞术被采用为一种强大且高效的细胞计数方法,因此将我们的方案整合到现有的工作流程中,使研究人员能够在研究共生甲藻组合的适应和适应策略时获得新的解析度。