European Molecular Biology Laboratory (EMBL), Grenoble, France.
Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
Science. 2023 Sep 15;381(6663):1217-1225. doi: 10.1126/science.add7859. Epub 2023 Sep 14.
The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism. Integrating cryo-electron microscopy with molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and experiments in cells, we demonstrate a dynamic, multistep phosphorylation mechanism, identify catalytically relevant interactions, and show that MAP2K-disordered amino termini determine pathway specificity. Our work captures a fundamental step of cell signaling: a kinase phosphorylating its downstream target kinase.
丝裂原活化蛋白激酶(MAPK)p38α 是炎症和免疫反应信号转导的核心组成部分,因此是一个重要的药物靶点。由于难以捕获瞬时和动态的异源激酶复合物,因此对于其通过 MAPK 激酶(MAP2K)的双磷酸化激活的分子机制知之甚少。我们采用多学科方法生成了 p38α 与其 MAP2K、MKK6 形成的复合物的结构模型,并深入了解其激活机制。通过将低温电子显微镜与分子动力学模拟、氢氘交换质谱和细胞内实验相结合,我们证明了一种动态的、多步骤的磷酸化机制,确定了催化相关的相互作用,并表明 MAP2K 无规卷曲的氨基末端决定了途径的特异性。我们的工作捕捉到了细胞信号转导的一个基本步骤:激酶磷酸化其下游靶激酶。