Wen Jia-Hui, Guo An-Qi, Li Meng-Ning, Yang Hua
State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
Anal Chim Acta. 2023 Oct 16;1278:341720. doi: 10.1016/j.aca.2023.341720. Epub 2023 Aug 18.
Ion mobility coupled with mass spectrometry (IM-MS), an emerging technology for analysis of complex matrix, has been facing challenges due to the complexities of chemical structures and original data, as well as low-efficiency and error-proneness of manual operations. In this study, we developed a structural similarity networking assisted collision cross-section prediction interval filtering (SSN-CCSPIF) strategy. We first carried out a structural similarity networking (SSN) based on Tanimoto similarities among Morgan fingerprints to classify the authentic compounds potentially existing in complex matrix. By performing automatic regressive prediction statistics on mass-to-charge ratios (m/z) and collision cross-sections (CCS) with a self-built Python software, we explored the IM-MS feature trendlines, established filtering intervals and filtered potential compounds for each SSN classification. Chemical structures of all filtered compounds were further characterized by interpreting their multidimensional IM-MS data. To evaluate the applicability of SSN-CCSPIF, we selected Ginkgo biloba extract and dripping pills. The SSN-CCSPIF subtracted more background interferences (43.24%∼43.92%) than other similar strategies with conventional ClassyFire criteria (10.71%∼12.13%) or without compound classification (35.73%∼36.63%). Totally, 229 compounds, including eight potential new compounds, were characterized. Among them, seven isomeric pairs were discriminated with the integration of IM-separation. Using SSN-CCSPIF, we can achieve high-efficient analysis of complex IM-MS data and comprehensive chemical profiling of complex matrix to reveal their material basis.
离子淌度联用质谱(IM-MS)作为一种用于分析复杂基质的新兴技术,由于化学结构和原始数据的复杂性,以及手动操作的低效率和易出错性,一直面临着挑战。在本研究中,我们开发了一种结构相似性网络辅助碰撞截面预测区间过滤(SSN-CCSPIF)策略。我们首先基于摩根指纹之间的塔尼莫托相似性进行结构相似性网络(SSN)分析,以对复杂基质中可能存在的真实化合物进行分类。通过使用自行构建的Python软件对质荷比(m/z)和碰撞截面(CCS)进行自动回归预测统计,我们探索了IM-MS特征趋势线,建立了过滤区间,并对每个SSN分类的潜在化合物进行了过滤。通过解释所有过滤化合物的多维IM-MS数据,进一步表征了它们的化学结构。为了评估SSN-CCSPIF的适用性,我们选择了银杏叶提取物和滴丸。与其他采用传统ClassyFire标准(10.71%∼12.13%)或未进行化合物分类(35.73%∼36.63%)的类似策略相比,SSN-CCSPIF消除了更多背景干扰(43.24%∼43.92%)。总共鉴定了229种化合物,包括8种潜在的新化合物。其中,通过IM分离的整合鉴别出7对异构体。使用SSN-CCSPIF,可以实现对复杂IM-MS数据的高效分析和对复杂基质的全面化学剖析,以揭示其物质基础。