Suppr超能文献

使用双约束随机梯度下降实现多平面全息显示的无串扰

Crosstalk-free for multi-plane holographic display using double-constraint stochastic gradient descent.

作者信息

Wang Jiabao, Wang Jun, Zhou Jie, Zhang Yuqi, Wu Yang

出版信息

Opt Express. 2023 Sep 11;31(19):31142-31157. doi: 10.1364/OE.499595.

Abstract

Multi-plane crosstalk is a key issue affecting the quality of holographic three-dimensional (3D) displays. The time-multiplexing stochastic gradient descent (TM-SGD) method has been applied to solve the inter-plane crosstalk problem in multi-plane reconstruction. However, the inter-plane crosstalk increases greatly as the inter-plane interval decreases, and the optimization time increases greatly as the number of planes increases. In this paper, we propose a double-constraint stochastic gradient descent method to suppress inter-plane crosstalk in multi-plane reconstruction. In the proposed method, we use the mask to make the optimization process focus more on the signal region and improve the reconstruction quality. Meanwhile, we adopt a constraint strategy of phase regularization to reduce the phase randomness of the signal region and suppress inter-plane crosstalk. Numerical simulation and optical experiment results confirm that our method can effectively suppress the inter-plane crosstalk and improve the quality of the reconstructed planes at a lower inter-plane interval. Moreover, the optimization time of our method is almost 4 times faster than that of TM-SGD. The proposed method can contribute to the realization of tomographic 3D visualization in the biomedical field, which requires the reconstruction of multiple tomographic images without inter-plane crosstalk.

摘要

多平面串扰是影响全息三维(3D)显示质量的关键问题。时间复用随机梯度下降(TM-SGD)方法已被应用于解决多平面重建中的平面间串扰问题。然而,随着平面间间隔减小,平面间串扰会大幅增加,并且随着平面数量增加,优化时间会大幅增长。在本文中,我们提出一种双约束随机梯度下降方法来抑制多平面重建中的平面间串扰。在所提出的方法中,我们使用掩码使优化过程更专注于信号区域并提高重建质量。同时,我们采用相位正则化的约束策略来降低信号区域的相位随机性并抑制平面间串扰。数值模拟和光学实验结果证实,我们的方法能够在较低的平面间间隔下有效抑制平面间串扰并提高重建平面的质量。此外,我们方法的优化时间几乎比TM-SGD快4倍。所提出的方法有助于在生物医学领域实现断层3D可视化,这需要重建多个无平面间串扰的断层图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验