Fan Weiru, Chen Tianrun, Tang Xiaobin, Xu Xingqi, Yuan Luqi, Yakovlev Vladislav V, Zhu Shi-Yao, Wang Da-Wei, Zhang Delong
Opt Express. 2023 Sep 11;31(19):31610-31621. doi: 10.1364/OE.500765.
Optical vortex beams, with phase singularity characterized by a topological charge (TC), introduces a new dimension for optical communication, quantum information, and optical light manipulation. However, the evaluation of TCs after beam propagation remains a substantial challenge, impeding practical applications. Here, we introduce vortices in lateral arrays (VOILA), a novel spatial multiplexing approach that enables simultaneous transmission of a lateral array of multiple vortices. Leveraging advanced learning techniques, VOILA effectively decodes TCs, even in the presence of strong optical nonlinearities simulated experimentally. Notably, our approach achieves substantial improvements in single-shot bandwidth, surpassing single-vortex scheme by several orders of magnitude. Furthermore, our system exhibits precise fractional TC recognition in both linear and nonlinear regimes, providing possibilities for high-bandwidth communication. The capabilities of VOILA promise transformative contributions to optical information processing and structured light research, with significant potential for advancements in diverse fields.
光学涡旋光束,其相位奇点由拓扑电荷(TC)表征,为光通信、量子信息和光操纵引入了一个新维度。然而,光束传播后拓扑电荷的评估仍然是一个重大挑战,阻碍了实际应用。在此,我们引入了横向阵列中的涡旋(VOILA),这是一种新颖的空间复用方法,能够同时传输多个涡旋的横向阵列。利用先进的学习技术,即使在实验模拟的强光非线性存在的情况下,VOILA也能有效地解码拓扑电荷。值得注意的是,我们的方法在单次带宽方面取得了显著改进,比单涡旋方案高出几个数量级。此外,我们的系统在线性和非线性区域都表现出精确的分数拓扑电荷识别能力,为高带宽通信提供了可能性。VOILA的能力有望为光信息处理和结构光研究带来变革性贡献,在不同领域具有显著的发展潜力。