Suppr超能文献

深度学习辅助的超高分辨率光学涡旋模式识别。

Superhigh-Resolution Recognition of Optical Vortex Modes Assisted by a Deep-Learning Method.

机构信息

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Phys Rev Lett. 2019 Nov 1;123(18):183902. doi: 10.1103/PhysRevLett.123.183902.

Abstract

Orbital angular momentum (OAM) has demonstrated great success in the optical communication field, which theoretically allows an infinite increase of the transmitted capacity. The resolution of a receiver to precisely recognize OAM modes is crucial to expand the communication capacity. Here, we propose a deep learning (DL) method to precisely recognize OAM modes with fractional topological charges. The minimum interval recognized between adjacent modes decreases to 0.01, which as far as we know is the first time this superhigh resolution has been realized. To exhibit its efficiency in the optical communication process, we transfer an Einstein portrait by a superhigh-resolution OAM multiplexing system. As the convolutional neuron networks can be trained by data up to an infinitely large volume in theory, this work exhibits a huge potential of generalized suitability for next generation DL based ultrafine OAM optical communication, which might even be applied to microwave, millimeter wave, and terahertz OAM communication systems.

摘要

轨道角动量 (OAM) 在光通信领域取得了巨大成功,理论上允许传输容量的无限增加。接收器精确识别 OAM 模式的分辨率对于扩展通信容量至关重要。在这里,我们提出了一种深度学习 (DL) 方法,可精确识别具有分数拓扑电荷的 OAM 模式。相邻模式之间可识别的最小间隔减小到 0.01,据我们所知,这是首次实现如此超高的分辨率。为了展示其在光通信过程中的效率,我们通过超高分辨率 OAM 复用系统传输爱因斯坦肖像。由于卷积神经元网络在理论上可以通过无限大的数据进行训练,因此这项工作为基于下一代深度学习的超精细 OAM 光通信的广泛适用性展示了巨大的潜力,甚至可能应用于微波、毫米波和太赫兹 OAM 通信系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验