Miao Zhaohong, Qin Lanlan, Zhou Zhaoxi, Zhou Meng, Fu Heqing, Zhang Lizhi, Zhou Jian
School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
Langmuir. 2023 Sep 26;39(38):13678-13687. doi: 10.1021/acs.langmuir.3c01875. Epub 2023 Sep 15.
The self-assembly and stimuli-responsive properties of nanogel poly(-isopropylacrylamide) (p(NIPAm)) and zwitterion-modified nanogel poly(-isopropylacrylamide--sulfobetainemethacrylate) (p(NIPAm--SBMA)) were explored by dissipative particle dynamics simulations. Simulation results reveal that for both types of nanogel, it is beneficial to form spherical nanogels at polymer concentrations of 5-10%. When the chain length () elongates from 10 to 40, the sizes of the nanogels enlarge. As for the p(NIPAm) nanogel, it shows thermoresponsiveness; when it switches to the hydrophilic state, the nanogel swells, and vice versa. The zwitterion-modified nanogel p(NIPAm--SBMA) possesses thermoresponsiveness and ionic strength responsiveness concurrently. At 293 K, both hydrophilic p(NIPAm) and superhydrophilic polysulfobetaine methacrylate (pSBMA) could appear on the outer surface of the nanogel; however, at 318 K, superhydrophilic pSBMA is on the outer surface to cover the hydrophobic p(NIPAm) core. As the temperature rises, the nanogel shrinks and remains antifouling all through. The salt-responsive property can be reflected by the nanogel size; the volumes of the nanogels in saline systems are larger than those in salt-free systems as the ionic condition inhibits the shrinkage of the zwitterionic pSBMA. This work exhibits the temperature-responsive and salt-responsive behavior of zwitterion-modified-pNIPAm nanogels at the molecular level and provides guidance in antifouling nanogel design.
通过耗散粒子动力学模拟研究了纳米凝胶聚(N-异丙基丙烯酰胺)(p(NIPAm))和两性离子改性纳米凝胶聚(N-异丙基丙烯酰胺-甲基丙烯酸磺酸甜菜碱)(p(NIPAm-SBMA))的自组装和刺激响应特性。模拟结果表明,对于这两种类型的纳米凝胶,在聚合物浓度为5-10%时有利于形成球形纳米凝胶。当链长()从10延长到40时,纳米凝胶的尺寸增大。对于p(NIPAm)纳米凝胶,它表现出热响应性;当它转变为亲水性状态时,纳米凝胶膨胀,反之亦然。两性离子改性纳米凝胶p(NIPAm-SBMA)同时具有热响应性和离子强度响应性。在293K时,亲水性的p(NIPAm)和超亲水性的聚甲基丙烯酸磺酸甜菜碱(pSBMA)都可能出现在纳米凝胶的外表面;然而,在318K时,超亲水性的pSBMA在外表面覆盖疏水的p(NIPAm)核。随着温度升高,纳米凝胶收缩并始终保持抗污性能。盐响应特性可以通过纳米凝胶尺寸来反映;由于离子条件抑制了两性离子pSBMA的收缩,在盐水体系中纳米凝胶的体积比在无盐体系中更大。这项工作在分子水平上展示了两性离子改性pNIPAm纳米凝胶的温度响应和盐响应行为,并为抗污纳米凝胶设计提供了指导。