Suppr超能文献

理解协同双刺激响应聚(异丙基丙烯酰胺)纳米凝胶分散体的相和形态行为。

Understanding the Phase and Morphological Behavior of Dispersions of Synergistic Dual-Stimuli-Responsive Poly(-isopropylacrylamide) Nanogels.

机构信息

Department of Earth, Ocean and Ecological Sciences , University of Liverpool, Jane Herdman Laboratories , Liverpool L69 3GP , U.K.

Anton Paar (UK) Ltd. , Unit F, The Courtyard , St. Albans AL4 0LA , U.K.

出版信息

J Phys Chem B. 2019 Jul 25;123(29):6303-6313. doi: 10.1021/acs.jpcb.9b04051. Epub 2019 Jul 11.

Abstract

This work represents a detailed investigation into the phase and morphological behavior of synergistic dual-stimuli-responsive poly(-isopropylacrylamide) nanogels, a material that is of considerable interest as a matrix for in situ forming implants. Nanogels were synthesized with four different diameters (65, 160, 310, and 450 nm) as monodispersed particles. These different samples were then prepared and characterized as both dilute (0.1 wt %) and concentrated dispersions (2-22 wt %). In the dilute form, all of the nanogels had the same response to the triggers of the physiological temperature and ionic strength. In water, the nanogels would deswell when heated above 32 °C, while they would aggregate if heated above this temperature at the physiological ionic strength. In the concentrated form, the nanogels exhibited a wide range of morphological changes, with liquid, swollen gel, shrunken gel, and aggregate structures all possible. The occurrence of these structures was dependent on many factors such as the temperature, ionic strength of the solvent, size and ζ-potential of the nanogel, and dispersion concentration. We explored these factors in detail with techniques such as visual studies, rheology, effective volume fraction, and shape factor measurement. The different-sized nanogels displayed differing phase and morphological behavior, but generally higher concentrations of the nanogels (>7 wt %) yielded gels in water with the transitions depending on the temperature. The smallest nanogel (65 nm diameter) exhibited the most unique behavior; it did not form a swollen gel at any concentration tested. Shape factor measurement for the nanogel samples showed that two of the larger three samples (160 and 310 nm) had core-shell structures with denser core cross-linking, while the smallest nanogel sample displayed a homogeneous cross-linked structure. We hypothesize that the smallest nanogels are able to undergo more extensive interpenetration compared to the larger nanogels, which meant that the smallest nanogel was not able to form a swollen gel. In the presence of salt at 12 wt %, all of the nanogels formed aggregates when heated above 35 °C due to the screening of the electrostatic stabilization by the salt. This work revealed unique behavior of the smallest nanogel with a homogeneous cross-linked structure; its phase and morphological behavior were unlike a particle dispersion, rather these were more similar to those of a branched polymer solution. In total, these findings can be used to provide information about the design of poly(-isopropylacrylamide) nanogel dispersions for different applications where highly specific spatiotemporal control of morphology is required, for example, in the formation of in situ forming implants or for pore blocking behavior.

摘要

这项工作深入研究了协同双刺激响应聚(异丙基丙烯酰胺)纳米凝胶的相态和形态行为,这种材料作为原位形成植入物的基质具有重要的研究意义。纳米凝胶的粒径分别为 65、160、310 和 450nm,合成后制作为稀溶液(0.1wt%)和浓分散液(2-22wt%)。在稀溶液中,所有纳米凝胶对生理温度和离子强度的触发因素都有相同的响应。在水中,纳米凝胶在加热到 32°C 以上时会溶胀,而在生理离子强度下加热到这个温度以上时会聚集。在浓溶液中,纳米凝胶表现出广泛的形态变化,可能出现液态、溶胀凝胶、收缩凝胶和聚集结构。这些结构的出现取决于许多因素,如温度、溶剂的离子强度、纳米凝胶的粒径和 ζ-电位以及分散浓度。我们使用视觉研究、流变学、有效体积分数和形状因子测量等技术详细研究了这些因素。不同粒径的纳米凝胶表现出不同的相态和形态行为,但一般来说,纳米凝胶的浓度越高(>7wt%),在水中形成的凝胶在转变时就越依赖于温度。最小的纳米凝胶(65nm 直径)表现出最独特的行为;在测试的任何浓度下都没有形成溶胀凝胶。纳米凝胶样品的形状因子测量表明,三个较大的纳米凝胶(160nm 和 310nm)中的两个具有更密集的核交联的核壳结构,而最小的纳米凝胶样品则显示出均匀交联的结构。我们假设最小的纳米凝胶能够进行比较大的纳米凝胶更广泛的互穿,这意味着最小的纳米凝胶无法形成溶胀凝胶。在 12wt%盐存在的情况下,所有纳米凝胶在加热到 35°C 以上时都会聚集,因为盐屏蔽了静电稳定化作用。这项工作揭示了具有均匀交联结构的最小纳米凝胶的独特行为;它的相态和形态行为与颗粒分散体不同,更类似于支化聚合物溶液。总的来说,这些发现可以为不同应用中聚(异丙基丙烯酰胺)纳米凝胶分散体的设计提供信息,例如在原位形成植入物的形成或孔阻塞行为中,需要对形态进行高度特定的时空控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d76e/7007235/02f1323fbca6/jp9b04051_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验