Suppr超能文献

将物理知识融入到蛋白质功能预测建模中以克服数据稀缺性:以 BK 通道为例。

Incorporating physics to overcome data scarcity in predictive modeling of protein function: A case study of BK channels.

机构信息

Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.

Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America.

出版信息

PLoS Comput Biol. 2023 Sep 15;19(9):e1011460. doi: 10.1371/journal.pcbi.1011460. eCollection 2023 Sep.

Abstract

Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ∆V1/2, with a RMSE ~ 32 mV and correlation coefficient of R ~ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ∆V1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction.

摘要

机器学习在许多化学和生物物理问题中发挥了变革性的作用,例如存在大量数据的蛋白质折叠问题。尽管如此,由于数据稀缺性的限制,许多重要的问题仍然对数据驱动的机器学习方法具有挑战性。克服数据稀缺性的一种方法是结合物理原理,例如通过分子建模和模拟。在这里,我们专注于大钾 (BK) 通道,它在心血管和神经系统中发挥重要作用。BK 通道的许多突变与各种神经和心血管疾病有关,但分子效应尚不清楚。过去三十年,已有 473 个特定于位置的突变的 BK 通道的电压门控特性通过实验进行了表征;然而,这些功能数据本身仍然过于稀疏,无法得出 BK 通道电压门控的预测模型。使用基于物理的建模,我们量化了所有单突变对通道开放和关闭状态的能量影响。与从原子模拟中得出的动态特性一起,这些物理描述符允许训练随机森林模型,该模型可以重现未见的实验测量的门控电压移位,RMSE32 mV,相关系数 R0.7。重要的是,该模型似乎能够揭示通道门控背后的非平凡物理原理,包括疏水性门控的核心作用。该模型还使用 S5 螺旋上 L235 和 V236 的四个新突变进行了评估,这些突变预测对 V1/2 有相反的影响,并表明 S5 在介导电压传感器-孔偶联中起关键作用。所有四个突变的测量 ∆V1/2 与预测定量一致,相关系数 R=0.92,RMSE=18 mV。因此,该模型可以在已知突变较少的区域中捕获非平凡的电压门控特性。BK 电压门控的预测建模的成功证明了结合物理和统计学习克服非平凡蛋白质功能预测中数据稀缺性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf3/10529646/7b545318be56/pcbi.1011460.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验