Suppr超能文献

用于稳定全固态钠电池的富氟化钠多功能层

NaF-Rich Multifunctional Layers toward Stable All-Solid-State Sodium Batteries.

作者信息

Liu Tinghu, Shen Lin, Li Yunming, Jiang Kemin, Song Libo, Jin Yuming, Yang Jing, Xin Xing, Yao Xiayin

机构信息

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China.

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 Sep 27;15(38):45026-45034. doi: 10.1021/acsami.3c10128. Epub 2023 Sep 15.

Abstract

NASICON oxide solid electrolytes are considered promising candidates for all-solid-state sodium batteries due to their extremely high ionic conductivity and favorable electrochemical stability. However, the practical application of NASICON electrolytes is greatly impeded by poor electrolyte-electrode interfacial contact and continuous sodium dendrite propagation. Herein, a NaF-rich multifunctional interface layer on the surface of a Na anode (Na@NaF-rich), containing NaF, amorphous carbon, and an unreacted C-F bond species, is developed in situ by the reaction between Na and commercial poly(tetrafluoroethylene). This NaF-rich interface layer is proven to reduce the diffusion barriers at the Na/NASICON electrolyte interface and homogenize Na deposition as well as suppress Na dendrite growth, thus achieving a high critical current density of 4 mA cm. The resultant NaV(PO)@C/Na@NaF-rich all-solid-state cell showed a high initial specific capacity of 117.6 mAh g at 0.1 C with a Coulombic efficiency of 94.8%. Even at 0.5 and 1 C, it still exhibited high capacity retentions of 83.3% and 80.4%, respectively, after 750 cycles.

摘要

NASICON氧化物固体电解质因其极高的离子电导率和良好的电化学稳定性,被认为是全固态钠电池的有前景的候选材料。然而,NASICON电解质的实际应用受到电解质与电极界面接触不良以及钠枝晶持续生长的极大阻碍。在此,通过钠与商用聚四氟乙烯之间的反应,原位制备了一种在钠阳极(Na@富NaF)表面富含NaF的多功能界面层,该界面层包含NaF、无定形碳和未反应的C-F键物种。这种富含NaF的界面层被证明可以降低Na/NASICON电解质界面处的扩散势垒,使钠沉积均匀化,并抑制钠枝晶生长,从而实现了4 mA cm的高临界电流密度。所得的NaV(PO)@C/Na@富NaF全固态电池在0.1 C时表现出117.6 mAh g的高初始比容量,库仑效率为94.8%。即使在0.5 C和1 C下,经过750次循环后,它仍分别表现出83.3%和80.4%的高容量保持率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验