Suppr超能文献

利用眼底图像和生成对抗网络生成的 OCT-A 血管图的合成。

Synthetic OCT-A blood vessel maps using fundus images and generative adversarial networks.

机构信息

McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.

VAMPIRE project, School of Science and Engineering (Computing), University of Dundee, Dundee, Scotland, UK.

出版信息

Sci Rep. 2023 Sep 15;13(1):15325. doi: 10.1038/s41598-023-42062-9.

Abstract

Vessel segmentation in fundus images permits understanding retinal diseases and computing image-based biomarkers. However, manual vessel segmentation is a time-consuming process. Optical coherence tomography angiography (OCT-A) allows direct, non-invasive estimation of retinal vessels. Unfortunately, compared to fundus images, OCT-A cameras are more expensive, less portable, and have a reduced field of view. We present an automated strategy relying on generative adversarial networks to create vascular maps from fundus images without training using manual vessel segmentation maps. Further post-processing used for standard en face OCT-A allows obtaining a vessel segmentation map. We compare our approach to state-of-the-art vessel segmentation algorithms trained on manual vessel segmentation maps and vessel segmentations derived from OCT-A. We evaluate them from an automatic vascular segmentation perspective and as vessel density estimators, i.e., the most common imaging biomarker for OCT-A used in studies. Using OCT-A as a training target over manual vessel delineations yields improved vascular maps for the optic disc area and compares to the best-performing vessel segmentation algorithm in the macular region. This technique could reduce the cost and effort incurred when training vessel segmentation algorithms. To incentivize research in this field, we will make the dataset publicly available to the scientific community.

摘要

眼底图像中的血管分割可以帮助理解视网膜疾病并计算基于图像的生物标志物。然而,手动血管分割是一个耗时的过程。光学相干断层扫描血管造影术 (OCT-A) 允许直接、非侵入性地估计视网膜血管。不幸的是,与眼底图像相比,OCT-A 相机更昂贵、便携性更低,视场更小。我们提出了一种基于生成对抗网络的自动化策略,该策略可以从没有使用手动血管分割图进行训练的眼底图像中创建血管图。进一步的标准 en face OCT-A 后处理可获得血管分割图。我们将我们的方法与基于手动血管分割图和 OCT-A 衍生的血管分割训练的最先进的血管分割算法进行比较。我们从自动血管分割的角度以及作为 OCT-A 中最常用的成像生物标志物的血管密度估计器来评估它们。将 OCT-A 用作手动血管描绘的训练目标可以提高视盘区域的血管图,并在黄斑区域与表现最好的血管分割算法相媲美。这项技术可以降低训练血管分割算法时的成本和工作量。为了鼓励该领域的研究,我们将向科学界公开数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac50/10504307/7149e8a69455/41598_2023_42062_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验