Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
Tencent AI Lab, Shenzhen, China.
Eur J Radiol. 2023 Oct;167:111081. doi: 10.1016/j.ejrad.2023.111081. Epub 2023 Sep 9.
The prognosis following a hemorrhagic stroke is usually extremely poor. Rating scales have been developed to predict the outcomes of patients with intracerebral hemorrhage (ICH). To date, however, the prognostic prediction models have not included the full range of relevant imaging features. We constructed a clinic-imaging fusion model based on convolutional neural networks (CNN) to predict the short-term prognosis of ICH patients.
This was a multi-center retrospective study, which included 1990 patients with ICH. Two CNN-based deep learning models were constructed to predict the neurofunctional outcomes at discharge; these were validated using a nested 5-fold cross-validation approach. The models' predictive efficiency was compared with the original ICH scale and the ICH grading scale. Poor neurological outcome was defined as a Glasgow Outcome Scale (GOS) score of 1-3.
The training and test sets included 1599 and 391 patients, respectively. For the test set, the clinic-imaging fusion model had the highest area under the curve (AUC = 0.903), followed by the imaging-based model (AUC = 0.886), the ICH scale (AUC = 0.777), and finally the ICH grading scale (AUC = 0.747).
The CNN prognostic prediction model based on neuroimaging features was more effective than the ICH scales in predicting the neurological outcomes of ICH patients at discharge. The CNN model's predictive efficiency slightly improved when clinical data were included.
脑出血患者的预后通常极差。已经开发了评分量表来预测颅内出血(ICH)患者的结局。然而,迄今为止,预后预测模型并未包含所有相关的影像学特征。我们构建了一种基于卷积神经网络(CNN)的临床-影像融合模型,以预测 ICH 患者的短期预后。
这是一项多中心回顾性研究,纳入了 1990 例 ICH 患者。构建了两个基于 CNN 的深度学习模型来预测出院时的神经功能结局;采用嵌套的 5 折交叉验证方法对这些模型进行验证。将模型的预测效率与原始 ICH 量表和 ICH 分级量表进行了比较。神经功能不良结局定义为格拉斯哥结局量表(GOS)评分 1-3 分。
训练集和测试集分别包含 1599 例和 391 例患者。对于测试集,临床-影像融合模型的曲线下面积(AUC)最高(AUC=0.903),其次是影像模型(AUC=0.886)、ICH 量表(AUC=0.777),最后是 ICH 分级量表(AUC=0.747)。
基于神经影像学特征的 CNN 预后预测模型在预测 ICH 患者出院时的神经结局方面比 ICH 量表更有效。当纳入临床数据时,CNN 模型的预测效率略有提高。