Guo Liping, Liu Yuancheng, Zeng Haiou, Zhang Shengping, Song Ruiyang, Yang Jing, Han Xiao, Wang Ying, Wang Luda
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China.
Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China.
Adv Mater. 2024 Jan;36(1):e2307242. doi: 10.1002/adma.202307242. Epub 2023 Nov 23.
Biological ion channels possess prominent ion transport performances attributed to their critical chemical groups across the continuous nanoscale filters. However, it is still a challenge to imitate these sophisticated performances in artificial nanoscale systems. Herein, this work develops the strategy to fabricate functionalized graphene nanopores in pioneer based on the synergistic regulation of the pore size and chemical properties of atomically thin confined structure through decoupling etching combined with in situ covalent modification. The modified graphene nanopores possess asymmetric ion transport behaviors and efficient monovalent metal ions sieving (K /Li selectivity ≈48.6). Meanwhile, it also allows preferential transport for cations, the resulting membranes exhibit a K /Cl selectivity of 76 and a H /Cl selectivity of 59.3. The synergistic effects of steric hindrance and electrostatic interactions imposing a higher energy barrier for Cl or Li across nanopores lead to ultra-selective H or K transport. Further, the functionalized graphene nanopores generate a power density of 25.3 W m and a conversion efficiency of 33.9%, showing potential application prospects in energy conversion. The theoretical studies quantitatively match well with the experimental results. The feasible preparation of functionalized graphene nanopores paves the way toward direct investigation on ion transport mechanism and advanced design in devices.
生物离子通道因其连续纳米级过滤器中的关键化学基团而具有卓越的离子传输性能。然而,在人工纳米系统中模仿这些复杂性能仍然是一项挑战。在此,本工作基于通过去耦蚀刻结合原位共价修饰对原子级薄受限结构的孔径和化学性质进行协同调控,开发了在先驱物中制备功能化石墨烯纳米孔的策略。修饰后的石墨烯纳米孔具有不对称离子传输行为和高效的单价金属离子筛分能力(K⁺/Li⁺选择性≈48.6)。同时,它还允许阳离子优先传输,所得膜表现出76的K⁺/Cl⁻选择性和59.3的H⁺/Cl⁻选择性。空间位阻和静电相互作用对Cl⁻或Li⁺穿过纳米孔施加了更高的能垒,导致了超选择性的H⁺或K⁺传输。此外,功能化石墨烯纳米孔产生了25.3 W m⁻²的功率密度和33.9%的转换效率,在能量转换方面显示出潜在的应用前景。理论研究与实验结果定量匹配良好。功能化石墨烯纳米孔的可行制备为直接研究离子传输机制和器件的先进设计铺平了道路。