Suppr超能文献

基于横断面数据库的机器学习骨质疏松特征选择及风险预测模型

Osteoporosis Feature Selection and Risk Prediction Model by Machine Learning Using a Cross-Sectional Database.

作者信息

Cha Yonghan, Seo Sung Hyo, Kim Jung-Taek, Kim Jin-Woo, Lee Sang-Yeob, Yoo Jun-Il

机构信息

Department of Orthopaedic Surgery, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea.

Department of Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea.

出版信息

J Bone Metab. 2023 Aug;30(3):263-273. doi: 10.11005/jbm.2023.30.3.263. Epub 2023 Aug 31.

Abstract

BACKGROUND

The purpose of this study was to verify the accuracy and validity of using machine learning (ML) to select risk factors, to discriminate differences in feature selection by ML between men and women, and to develop predictive models for patients with osteoporosis in a big database.

METHODS

The data on 968 observed features from a total of 3,484 the Korea National Health and Nutrition Examination Survey participants were collected. To find preliminary features that were well-related to osteoporosis, logistic regression, random forest, gradient boosting, adaptive boosting, and support vector machine were used.

RESULTS

In osteoporosis feature selection by 5 ML models in this study, the most selected variables as risk factors in men and women were body mass index, monthly alcohol consumption, and dietary surveys. However, differences between men and women in osteoporosis feature selection by ML models were age, smoking, and blood glucose level. The receiver operating characteristic (ROC) analysis revealed that the area under the ROC curve for each ML model was not significantly different for either gender.

CONCLUSIONS

ML performed a feature selection of osteoporosis, considering hidden differences between men and women. The present study considers the preprocessing of input data and the feature selection process as well as the ML technique to be important factors for the accuracy of the osteoporosis prediction model.

摘要

背景

本研究的目的是验证使用机器学习(ML)选择风险因素的准确性和有效性,辨别ML在男性和女性之间进行特征选择的差异,并在一个大型数据库中为骨质疏松症患者开发预测模型。

方法

收集了来自韩国国家健康与营养检查调查的3484名参与者的968个观察特征的数据。为了找到与骨质疏松症密切相关的初步特征,使用了逻辑回归、随机森林、梯度提升、自适应提升和支持向量机。

结果

在本研究中通过5种ML模型进行骨质疏松症特征选择时,男性和女性中作为风险因素被选中最多的变量是体重指数、每月饮酒量和饮食调查。然而,ML模型在骨质疏松症特征选择上男性和女性之间的差异在于年龄、吸烟和血糖水平。受试者工作特征(ROC)分析显示,每个ML模型的ROC曲线下面积在两种性别中均无显著差异。

结论

ML在考虑男性和女性之间潜在差异的情况下对骨质疏松症进行了特征选择。本研究认为输入数据的预处理、特征选择过程以及ML技术是骨质疏松症预测模型准确性的重要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2385/10509024/718d9e22c0ba/jbm-2023-30-3-263f1.jpg

相似文献

1
Osteoporosis Feature Selection and Risk Prediction Model by Machine Learning Using a Cross-Sectional Database.
J Bone Metab. 2023 Aug;30(3):263-273. doi: 10.11005/jbm.2023.30.3.263. Epub 2023 Aug 31.
2
Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
Arch Osteoporos. 2020 Oct 23;15(1):169. doi: 10.1007/s11657-020-00802-8.
3
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
4
Sarcopenia feature selection and risk prediction using machine learning: A cross-sectional study.
Medicine (Baltimore). 2019 Oct;98(43):e17699. doi: 10.1097/MD.0000000000017699.
5
Osteoporosis Pre-Screening Using Ensemble Machine Learning in Postmenopausal Korean Women.
Healthcare (Basel). 2022 Jun 14;10(6):1107. doi: 10.3390/healthcare10061107.
9
Machine Learning Can Improve Clinical Detection of Low BMD: The DXA-HIP Study.
J Clin Densitom. 2021 Oct-Dec;24(4):527-537. doi: 10.1016/j.jocd.2020.10.004. Epub 2020 Oct 20.
10
Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
Comput Methods Programs Biomed. 2022 Oct;225:107028. doi: 10.1016/j.cmpb.2022.107028. Epub 2022 Jul 21.

引用本文的文献

1
Relationship between albumin-corrected anion gap and lumbar spine bone mineral density: a cross-sectional study.
Front Aging. 2025 Feb 11;6:1511294. doi: 10.3389/fragi.2025.1511294. eCollection 2025.

本文引用的文献

1
Association of geriatric nutritional risk index with the risk of osteoporosis in the elderly population in the NHANES.
Front Endocrinol (Lausanne). 2022 Nov 29;13:965487. doi: 10.3389/fendo.2022.965487. eCollection 2022.
2
Machine learning in knee osteoarthritis: A review.
Osteoarthr Cartil Open. 2020 May 4;2(3):100069. doi: 10.1016/j.ocarto.2020.100069. eCollection 2020 Sep.
3
Osteoporosis Pre-Screening Using Ensemble Machine Learning in Postmenopausal Korean Women.
Healthcare (Basel). 2022 Jun 14;10(6):1107. doi: 10.3390/healthcare10061107.
4
The clinician's guide to prevention and treatment of osteoporosis.
Osteoporos Int. 2022 Oct;33(10):2049-2102. doi: 10.1007/s00198-021-05900-y. Epub 2022 Apr 28.
5
Osteoporosis in men.
Lancet Diabetes Endocrinol. 2022 Apr;10(4):273-283. doi: 10.1016/S2213-8587(22)00012-2. Epub 2022 Mar 2.
6
Osteoporosis in Men: A Review of an Underestimated Bone Condition.
Int J Mol Sci. 2021 Feb 20;22(4):2105. doi: 10.3390/ijms22042105.
7
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs.
Nat Commun. 2021 Feb 16;12(1):1066. doi: 10.1038/s41467-021-21311-3.
9
Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
Arch Osteoporos. 2020 Oct 23;15(1):169. doi: 10.1007/s11657-020-00802-8.
10
Introduction of the Cost-Effectiveness Studies of Fracture Liaison Service in Other Countries.
J Bone Metab. 2020 May;27(2):79-83. doi: 10.11005/jbm.2020.27.2.79. Epub 2020 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验