Suppr超能文献

机器学习可提高低骨密度的临床检出率:DXA-HIP 研究。

Machine Learning Can Improve Clinical Detection of Low BMD: The DXA-HIP Study.

机构信息

Department of Industrial Engineering, Tsinghua University, Beijing, China.

Department of Industrial Engineering, Tsinghua University, Beijing, China; School of Engineering, National University of Ireland, Galway, Ireland.

出版信息

J Clin Densitom. 2021 Oct-Dec;24(4):527-537. doi: 10.1016/j.jocd.2020.10.004. Epub 2020 Oct 20.

Abstract

BACKGROUND

Identification of those at high risk before a fracture occurs is an essential part of osteoporosis management. This topic remains a significant challenge for researchers in the field, and clinicians worldwide. Although many algorithms have been developed to either identify those with a diagnosis of osteoporosis or predict their risk of fracture, concern remains regarding their accuracy and application. Scientific advances including machine learning methods are rapidly gaining appreciation as alternative techniques to develop or enhance risk assessment and current practice. Recent evidence suggests that these methods could play an important role in the assessment of osteoporosis and fracture risk.

METHODS

Data used for this study included Dual-energy X-ray Absorptiometry (DXA) bone mineral density and T-scores, and multiple clinical variables drawn from a convenience cohort of adult patients scanned on one of 4 DXA machines across three hospitals in the West of Ireland between January 2000 and November 2018 (the DXA-Heath Informatics Prediction Cohort). The dataset was cleaned, validated and anonymized, and then split into an exploratory group (80%) and a development group (20%) using the stratified sampling method. We first established the validity of a simple tool, the Osteoporosis Self-assessment Tool Index (OSTi) to identify those classified as osteoporotic by the modified International Society for Clinical Densitometry DXA criteria. We then compared these results to seven machine learning techniques (MLTs): CatBoost, eXtreme Gradient Boosting, Neural network, Bagged flexible discriminant analysis, Random forest, Logistic regression and Support vector machine to enhance the discrimination of those classified as osteoporotic or not. The performance of each prediction model was measured by calculating the area under the curve (AUC) with 95% confidence interval (CI), and was compared against the OSTi.

RESULTS

A cohort of 13,577 adults aged ≥40 yr at the age of their first scan was identified including 11,594 women and 1983 men. 2102 (18.13%) females and 356 (17.95%) males were identified with osteoporosis based on their lowest T-score. The OSTi performed well in our cohort in both men (AUC 0.723, 95% CI 0.659-0.788) and women (AUC 0.810, 95% CI 0.787-0.833). Four MLTs improved discrimination in both men and women, though the incremental benefit was small. eXtreme Gradient Boosting showed the most promising results: +4.5% (AUC 0.768, 95% CI 0.706-0.829) for men and +2.3% (AUC 0.833, 95% CI 0.812-0.853) for women. Similarly MLTs outperformed OSTi in sensitivity analyses-which excluded those subjects taking osteoporosis medications-though the absolute improvements differed.

CONCLUSION

The OSTi retains an important role in identifying older men and women most likely to have osteoporosis by bone mineral density classification. MLTs could improve DXA detection of osteoporosis classification in older men and women. Further exploration of MLTs is warranted in other populations, and with additional data.

摘要

背景

在骨折发生之前识别高危人群是骨质疏松症管理的重要组成部分。这一主题仍然是该领域研究人员和全球临床医生面临的重大挑战。尽管已经开发出许多算法来识别已经诊断出骨质疏松症的患者或预测其骨折风险,但人们仍然对其准确性和适用性表示担忧。包括机器学习方法在内的科学进步正在迅速得到认可,成为开发或增强风险评估和当前实践的替代技术。最近的证据表明,这些方法可以在评估骨质疏松症和骨折风险方面发挥重要作用。

方法

本研究使用的数据包括双能 X 射线吸收法(DXA)骨密度和 T 分数,以及从爱尔兰西部三家医院的 4 台 DXA 机上扫描的 40 岁以上成年患者的多个临床变量中获得。数据集经过清理、验证和匿名化,然后使用分层抽样方法分为探索组(80%)和开发组(20%)。我们首先验证了一种简单工具——骨质疏松症自我评估工具指数(OSTi)的有效性,该工具用于识别根据改良国际临床密度测定学会 DXA 标准分类为骨质疏松症的患者。然后,我们将这些结果与七种机器学习技术(MLT)进行了比较:CatBoost、极端梯度提升、神经网络、袋装灵活判别分析、随机森林、逻辑回归和支持向量机,以提高对骨质疏松症或非骨质疏松症的分类的区分能力。通过计算 95%置信区间(CI)的曲线下面积(AUC)来衡量每个预测模型的性能,并与 OSTi 进行比较。

结果

确定了一个年龄在首次扫描时≥40 岁的 13577 名成年人队列,其中包括 11594 名女性和 1983 名男性。根据最低 T 分数,2102 名女性(18.13%)和 356 名男性(17.95%)被诊断为骨质疏松症。OSTi 在我们的队列中表现良好,无论是男性(AUC 0.723,95%CI 0.659-0.788)还是女性(AUC 0.810,95%CI 0.787-0.833)。四种 MLT 提高了男性和女性的区分能力,尽管增量收益很小。极端梯度提升显示出最有希望的结果:男性+4.5%(AUC 0.768,95%CI 0.706-0.829),女性+2.3%(AUC 0.833,95%CI 0.812-0.853)。类似地,MLT 在排除服用骨质疏松症药物的患者的敏感性分析中表现优于 OSTi,尽管绝对改善程度不同。

结论

OSTi 在通过骨密度分类识别最有可能患有骨质疏松症的老年男性和女性方面仍然具有重要作用。MLT 可以提高 DXA 对骨质疏松症分类的检测能力。需要在其他人群中进一步探索 MLT,并结合其他数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验