Suppr超能文献

Effect of dye laser pulse duration on selective cutaneous vascular injury.

作者信息

Garden J M, Tan O T, Kerschmann R, Boll J, Furumoto H, Anderson R R, Parrish J A

出版信息

J Invest Dermatol. 1986 Nov;87(5):653-7. doi: 10.1111/1523-1747.ep12456368.

Abstract

The pulsed dye laser at 577 nm, a wavelength well absorbed by oxyhemoglobin, causes highly selective thermal injury to cutaneous blood vessels. Confinement of thermal damage to microvessels is, in theory, related to the laser exposure time (pulsewidth) on selective vascular injury. This study investigates the effect of 577 nm dye laser pulsewidth on selective vascular injury. Nine Caucasian, normal volunteers received 577 nm dye laser exposures at pulsewidths of 1.5-350 microseconds to their skin. Clinical purpura threshold exposure doses were determined in each volunteer, and biopsies of threshold and suprathreshold doses were examined in each volunteer. The laser exposure dose required to produce purpura increased as pulsewidth increased in all 9 subjects (p less than 0.001). This finding corresponds to laser pulsewidths equal to or exceeding the thermal relaxation times for dermal blood vessels. Histologically, vessel damage was selectively, but qualitatively, different for short vs long pulsewidths. Pulsewidths shorter than 20 microseconds caused vessel wall fragmentation and hemorrhage, whereas longer pulsewidths caused no significant hemorrhage. The purpura noted clinically appears to be due to a coagulum of intralumenal denatured erythrocytes. At 24 h, there was marked vessel wall necrosis at all pulsewidths. The short pulsewidths may cause erythrocyte vaporization, rapid thermal expansion, and mechanical vessel rupture with hemorrhage. Long pulsewidths appear to cause thermal denaturation with less mechanical vessel damage. The selective, nonhemorrhagic, vascular necrosis caused by the long-pulsewidth dye laser may lead to a more desirable clinical outcome in the therapy of blood vessel disease processes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验