Gao Qiang, Dong Junkai, Ledwith Patrick, Parker Daniel, Khalaf Eslam
Department of Physics, The University of Texas at Austin, Texas 78712, USA.
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2023 Sep 1;131(9):096401. doi: 10.1103/PhysRevLett.131.096401.
Moiré systems have emerged in recent years as a rich platform to study strong correlations. Here, we will propose a simple, experimentally feasible setup based on periodically strained graphene that reproduces several key aspects of twisted moiré heterostructures-but without introducing a twist. We consider a monolayer graphene sheet subject to a C_{2}-breaking periodic strain-induced pseudomagnetic field with period L_{M}≫a, along with a scalar potential of the same period. This system has almost ideal flat bands with valley-resolved Chern number ±1, where the deviation from ideal band geometry is analytically controlled and exponentially small in the dimensionless ratio (L_{M}/l_{B})^{2}, where l_{B} is the magnetic length corresponding to the maximum value of the pseudomagnetic field. Moreover, the scalar potential can tune the bandwidth far below the Coulomb scale, making this a very promising platform for strongly interacting topological phases. Using a combination of strong-coupling theory and self-consistent Hartree-Fock, we find quantum anomalous Hall states at integer fillings. At fractional filling, exact diagonaliztion reveals a fractional Chern insulator at parameters in the experimentally feasible range. Overall, we find that this system has larger interaction-induced gaps, smaller quasiparticle dispersion, and enhanced tunability compared to twisted graphene systems, even in their ideal limit.
近年来,莫尔条纹系统已成为研究强关联的丰富平台。在此,我们将提出一种基于周期性应变石墨烯的简单、实验上可行的装置,该装置能重现扭曲莫尔条纹异质结构的几个关键方面——但不引入扭曲。我们考虑一个单层石墨烯片,它受到一个具有周期(L_M\gg a)的破坏(C_2)对称性的周期性应变诱导的赝磁场,以及一个相同周期的标量势。这个系统具有几乎理想的平带,其谷分辨陈数为(\pm1),其中与理想能带几何形状的偏差可以通过解析控制,并且在无量纲比((L_M/l_B)^2)中呈指数级小,其中(l_B)是对应于赝磁场最大值的磁长度。此外,标量势可以将带宽调节到远低于库仑尺度,这使得它成为研究强相互作用拓扑相的非常有前途的平台。通过结合强耦合理论和自洽哈特里 - 福克方法,我们在整数填充时发现了量子反常霍尔态。在分数填充时,精确对角化揭示了在实验可行范围内的参数下存在一个分数陈绝缘体。总体而言,我们发现与扭曲石墨烯系统相比,即使在其理想极限情况下,这个系统具有更大的相互作用诱导能隙、更小的准粒子色散以及更强的可调性。