Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Environ Sci Technol. 2023 Oct 3;57(39):14747-14759. doi: 10.1021/acs.est.3c04472. Epub 2023 Sep 18.
Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na and K transport, may overestimate the Li/Mg selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li/Mg selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.
从盐湖中提取锂的蒸发技术加剧了淡水资源短缺和湿地破坏,并且生产周期漫长。电渗析(ED)为连续提取锂提供了一种环境友好的替代方法,并且适合使用可再生能源。然而,盐湖卤水是高盐度多组分混合物,复杂的盐水-膜相互作用的影响仍未得到很好的理解。在这里,我们利用涵盖四个进料盐度、三个 pH 值和五个电流密度的 1250 个原始盐湖卤水测量值,定量评估了溶液组成、盐度和酸度对电渗析反离子选择性和热力学效率的影响。我们的实验表明,通常使用的二元阳离子溶液忽略了 Na 和 K 的传输,可能会使 Li/Mg 选择性高估 250%,并使比能消耗(SEC)低估 54.8 倍。由于高盐条件,暴露于盐湖卤水中会削弱 Donnan 排斥作用,从而放大 Mg 的泄漏。更高的电流密度会增强溶液-膜界面的 Donnan 势,并改善高盐卤水带来的选择性劣化。然而,反离子选择性和热力学效率之间存在着陡峭的权衡,控制着 ED 的性能:Li/Mg 选择性提高 6.25 倍,SEC 增加 71.6%。最后,我们的分析表明,工业规模的 ED 模块可以满足现有的盐湖生产能力,同时由利用不到 1%盐滩面积的光伏农场供电。