Kong Na, He Jin, Yang Wenrong
School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia.
Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States.
J Phys Chem Lett. 2023 Sep 28;14(38):8513-8524. doi: 10.1021/acs.jpclett.3c01955. Epub 2023 Sep 18.
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
控制和理解分子结的化学性质是从化学、纳米技术到生物技术和生物学等各个领域的主要主题之一。随机单实体碰撞电化学(SECE)提供了强大的工具,用于在纳米受限空间中研究单个实体,如单细胞、单颗粒甚至单分子。通过SECE碰撞形成的分子结在以高空间分辨率和高时间分辨率监测分子动力学以及与混合技术的可行结合方面显示出各种潜在应用。本综述重点介绍了该领域最近报道的新突破、开创性研究和趋势。此外,还讨论了利用SECE研究分子结动力学的未来挑战。