State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China.
J Phys Chem Lett. 2022 Jun 2;13(21):4653-4659. doi: 10.1021/acs.jpclett.2c00960. Epub 2022 May 23.
Single-entity electrochemistry (SEE) provides powerful means to measure single cells, single particles, and even single molecules at the nanoscale by diverse well-defined interfaces. The nanoconfined electrode interface has significantly enhanced structural, electrical, and compositional characteristics that have great effects on the assay limitation and selectivity of single-entity measurement. In this Perspective, after introducing the dynamic chemistry interactions of the target and electrode interface, we present a fundamental understanding of how these dynamic interactions control the features of the electrode interface and thus the stochastic and discrete electrochemical responses of single entities under nanoconfinement. Both stochastic single-entity collision electrochemistry and nanopore electrochemistry as examples in this Perspective explore how these interactions alter the transient charge transfer and mass transport. Finally, we discuss the further challenges and opportunities in SEE, from the design of sensing interfaces to hybrid spectro-electrochemical methods, theoretical models, and advanced data processing.
单粒子电化学(SEE)通过各种定义明确的界面为纳米尺度上的单细胞、单颗粒甚至单分子的测量提供了强大的手段。纳米受限的电极界面具有显著增强的结构、电学和组成特性,对单粒子测量的分析限制和选择性有很大的影响。在本观点中,在介绍了目标和电极界面的动态化学相互作用之后,我们对这些动态相互作用如何控制电极界面的特性以及因此在纳米受限下单粒子的随机和离散电化学响应有了基本的了解。本观点以随机单粒子碰撞电化学和纳米孔电化学为例,探讨了这些相互作用如何改变瞬态电荷转移和质量传输。最后,我们从传感界面的设计到混合光谱电化学方法、理论模型和先进的数据处理,讨论了 SEE 中的进一步挑战和机遇。