School of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom.
Division of Remote Sensing of Forests, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2215047120. doi: 10.1073/pnas.2215047120. Epub 2023 Sep 18.
Metabolic scaling theory (MST) provides an understanding of scaling in organismal morphology. Empirical data on the apparently universal pattern of tip-to-base conduit widening across vascular plants motivate a set of generalized MST (gMST) relationships allowing for variable rates of conduit coalescence and taper and a transition between transport and diffusive domains. Our model, with coalescence limited to the distalmost part of the conductive system, reconciles previous MST-based models and extends their applicability to the entire plant. We derive an inverse relationship between stem volume taper and conduit widening, which implies that plant morphology is dictated by vascular optimality and not the assumption of constant sapwood area across all branching levels, contradicting Leonardo's rule. Thus, energy efficiency controls conduit coalescence rate, lowering the carbon cost needed to sustain the vascular network. Our model shows that as a plant grows taller, it must increase conduit widening and coalescence, which may make it more vulnerable to drought. We calculated how our gMST model implies a lower carbon cost to sustain a similar network compared to previous MST-based models. We also show that gMST predicts the cross-sectional area of vessels and their frequency along the relative length better than previous MST models for a range of plant types. We encourage further research obtaining data that would allow testing other gMST predictions that remain unconfirmed empirically, such as conduit coalescence rate in stems. The premise of energy efficiency can potentially become instrumental to our understanding of plant carbon allocation.
代谢缩放理论(MST)为生物体形态的缩放提供了理解。关于血管植物中普遍存在的尖端到基部导管变宽模式的经验数据,激发了一组广义 MST(gMST)关系,这些关系允许导管合并和变细的速率以及传输和扩散域之间的过渡发生变化。我们的模型将合并限制在传导系统的最远端,调和了以前基于 MST 的模型,并将它们的适用性扩展到整个植物。我们得出了茎体积变细与导管变宽之间的反比关系,这意味着植物形态是由血管最优化决定的,而不是假设整个分支水平的边材面积不变,与达芬奇法则相矛盾。因此,能量效率控制着导管合并的速度,降低了维持血管网络所需的碳成本。我们的模型表明,随着植物的生长,它必须增加导管的变宽和合并,这可能使其更容易受到干旱的影响。我们计算了 gMST 模型如何暗示与以前基于 MST 的模型相比,维持类似网络所需的碳成本更低。我们还表明,gMST 比以前的 MST 模型更好地预测了一系列植物类型的导管横截面积及其在相对长度上的频率。我们鼓励进一步研究,获得数据以测试其他仍未经验证的 gMST 预测,例如茎中的导管合并率。能效的前提有可能成为我们理解植物碳分配的工具。