Suppr超能文献

植物形态与功能异速协变的通用模型。

A general model for allometric covariation in botanical form and function.

作者信息

Price Charles A, Enquist Brian J, Savage Van M

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13204-9. doi: 10.1073/pnas.0702242104. Epub 2007 Jul 30.

Abstract

The West, Brown, and Enquist (WBE) theory for the origin of allometric scaling laws is centered on the idea that the geometry of the vascular network governs how a suite of organismal traits covary with each other and, ultimately, how they scale with organism size. This core assumption has been combined with other secondary assumptions based on physiological constraints, such as minimizing the scaling of transport and biomechanical costs while maximally filling a volume. Together, these assumptions give predictions for specific "quarter-power" scaling exponents in biology. Here we provide a strong test of the core assumption of WBE by examining how well it holds when the secondary assumptions have been relaxed. Our relaxed version of WBE predicts that allometric exponents are highly constrained and covary according to specific quantitative functions. To test this core prediction, we assembled several botanical data sets with measures of the allometry of morphological traits. A wide variety of plant taxa appear to obey the predictions of the model. Our results (i) underscore the importance of network geometry in governing the variability and central tendency of biological exponents, (ii) support the hypothesis that selection has primarily acted to minimize the scaling of hydrodynamic resistance, and (iii) suggest that additional selection pressures for alternative branching geometries govern much of the observed covariation in biological scaling exponents. Understanding how selection shapes hierarchical branching networks provides a general framework for understanding the origin and covariation of many allometric traits within a complex integrated phenotype.

摘要

韦斯特、布朗和恩奎斯特(WBE)关于异速生长比例定律起源的理论,其核心观点是血管网络的几何结构决定了一系列生物体特征如何相互协变,以及最终它们如何随生物体大小而变化。这一核心假设与基于生理限制的其他次要假设相结合,比如在最大程度填充体积的同时,尽量减少运输和生物力学成本的变化。这些假设共同给出了生物学中特定“四分之一次幂”比例指数的预测。在此,我们通过检验当次要假设放宽时,WBE的核心假设能在多大程度上成立,对其进行了有力验证。我们放宽后的WBE版本预测,异速生长指数受到高度限制,并根据特定的定量函数协变。为了检验这一核心预测,我们收集了几个包含形态特征异速生长测量数据的植物数据集。各种各样的植物类群似乎都符合该模型的预测。我们的结果:(i)强调了网络几何结构在控制生物学指数的变异性和集中趋势方面的重要性;(ii)支持了选择主要作用于最小化流体动力阻力变化的假说;(iii)表明对替代分支几何结构的额外选择压力,在很大程度上控制了生物学比例指数中观察到的协变。理解选择如何塑造分层分支网络,为理解复杂综合表型中许多异速生长特征的起源和协变提供了一个通用框架。

相似文献

1
A general model for allometric covariation in botanical form and function.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13204-9. doi: 10.1073/pnas.0702242104. Epub 2007 Jul 30.
2
A general model for metabolic scaling in self-similar asymmetric networks.
PLoS Comput Biol. 2017 Mar 20;13(3):e1005394. doi: 10.1371/journal.pcbi.1005394. eCollection 2017 Mar.
4
Sizing up allometric scaling theory.
PLoS Comput Biol. 2008 Sep 12;4(9):e1000171. doi: 10.1371/journal.pcbi.1000171.
5
Flow similarity, stochastic branching, and quarter-power scaling in plants.
Plant Physiol. 2022 Oct 27;190(3):1854-1865. doi: 10.1093/plphys/kiac358.
6
An empirical assessment of tree branching networks and implications for plant allometric scaling models.
Ecol Lett. 2013 Aug;16(8):1069-78. doi: 10.1111/ele.12127. Epub 2013 Jun 26.
7
Computer simulations support a core prediction of a contentious plant model.
Am J Bot. 2012 Mar;99(3):508-16. doi: 10.3732/ajb.1100415. Epub 2012 Feb 27.
10
Allometric covariation: a hallmark behavior of plants and leaves.
New Phytol. 2012 Mar;193(4):882-9. doi: 10.1111/j.1469-8137.2011.04022.x.

引用本文的文献

1
Scaling in branch thickness and the fractal aesthetic of trees.
PNAS Nexus. 2025 Feb 11;4(2):pgaf003. doi: 10.1093/pnasnexus/pgaf003. eCollection 2025 Feb.
2
Modeling and evaluating site and provenance variation in height-diameter relationships for Buch.-Ham. ex D. Don in southern China.
Front Plant Sci. 2023 Oct 2;14:1248278. doi: 10.3389/fpls.2023.1248278. eCollection 2023.
3
Vascular optimality dictates plant morphology away from Leonardo's rule.
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2215047120. doi: 10.1073/pnas.2215047120. Epub 2023 Sep 18.
4
Declining metabolic scaling parallels an ontogenetic change from elongate to deep-bodied shapes in juvenile Brown trout.
Curr Zool. 2022 May 25;69(3):294-303. doi: 10.1093/cz/zoac042. eCollection 2023 Jun.
5
The global spectrum of plant form and function: enhanced species-level trait dataset.
Sci Data. 2022 Dec 7;9(1):755. doi: 10.1038/s41597-022-01774-9.
6
Flow similarity, stochastic branching, and quarter-power scaling in plants.
Plant Physiol. 2022 Oct 27;190(3):1854-1865. doi: 10.1093/plphys/kiac358.
7
Solving the grand challenge of phenotypic integration: allometry across scales.
Genetica. 2022 Aug;150(3-4):161-169. doi: 10.1007/s10709-022-00158-6. Epub 2022 Jul 20.
9
Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation.
Nat Ecol Evol. 2022 Jan;6(1):36-50. doi: 10.1038/s41559-021-01616-8. Epub 2021 Dec 23.
10
Scaling of joint mass and metabolism fluctuations in in silico cell-laden spheroids.
Proc Natl Acad Sci U S A. 2021 Sep 21;118(38). doi: 10.1073/pnas.2025211118.

本文引用的文献

1
Tansley Review No. 22 What becomes of the transpiration stream?
New Phytol. 1990 Mar;114(3):341-368. doi: 10.1111/j.1469-8137.1990.tb00404.x.
2
MEASURING THE HYDRAULIC DIAMETER OF A PORE OR CONDUIT.
Am J Bot. 1992 Oct;79(10):1158-1161. doi: 10.1002/j.1537-2197.1992.tb13712.x.
3
Interpreting phenotypic variation in plants.
Trends Ecol Evol. 1994 May;9(5):187-91. doi: 10.1016/0169-5347(94)90087-6.
5
Scaling mass and morphology in leaves: an extension of the WBE model.
Ecology. 2007 May;88(5):1132-41. doi: 10.1890/06-1158.
6
Biological scaling: does the exception prove the rule?
Nature. 2007 Feb 1;445(7127):E9-10; discussion E10-1. doi: 10.1038/nature05548.
7
Bivariate line-fitting methods for allometry.
Biol Rev Camb Philos Soc. 2006 May;81(2):259-91. doi: 10.1017/S1464793106007007. Epub 2006 Mar 30.
8
Universal scaling of respiratory metabolism, size and nitrogen in plants.
Nature. 2006 Jan 26;439(7075):457-61. doi: 10.1038/nature04282.
9
Beyond the '3/4-power law': variation in the intra- and interspecific scaling of metabolic rate in animals.
Biol Rev Camb Philos Soc. 2005 Nov;80(4):611-62. doi: 10.1017/S1464793105006834.
10
Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass.
Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15661-3. doi: 10.1073/pnas.0405857101. Epub 2004 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验