Environmental Systems Science Department, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland.
Department of Health Science and Technology, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland.
Environ Sci Technol. 2023 Oct 3;57(39):14707-14716. doi: 10.1021/acs.est.3c04180. Epub 2023 Sep 18.
Plastic fate in freshwater systems is dependent on particle size, morphology, and physicochemical surface properties (e.g., charge, surface roughness, and hydrophobicity). Environmental aging processes, such as photochemical weathering and eco-corona formation due to dissolved organic matter (DOM) adsorption on plastic surfaces, can alter their physicochemical properties, affecting fate and transport. While plastic aging has been studied from a materials science perspective, its specific implications in environmental contexts remain less understood. Although photochemical weathering and eco-corona formation occur simultaneously in the environment, in this work, we systematically assessed the effects of photochemical weathering on the physicochemical properties of polymers (polyethylene, polypropylene, polyethylene terephthalate, and polystyrene) and how this influences the adsorption of DOMs (Suwannee River humic acid, fulvic acid, and natural organic matter) relative to pristine polymers. Pristine polymers initially had different and distinct physicochemical surface properties, but upon aging, they became more similar in terms of surface properties. Photochemical weathering resulted in a decrease in polymer film thickness, an increase in surface roughness, and hydrophilicity. DOM adlayers on the polymer surfaces resulted in more comparable wettability, effectively masking the initial polymer properties. Collectively, this study explores the physiochemical changes polymers undergo in laboratory studies mimicking environmental conditions. Understanding these changes is the initial step to rationalizing and predicting processes and interactions such as heteroaggregation that dictate the fate of plastics in the environment.
塑料在淡水系统中的命运取决于颗粒大小、形态和物理化学表面特性(例如电荷、表面粗糙度和疏水性)。环境老化过程,如光化学风化和由于溶解有机物(DOM)在塑料表面上的吸附而形成的生态冠,会改变其物理化学性质,从而影响其命运和传输。虽然从材料科学的角度研究了塑料老化,但在环境背景下,其具体影响仍知之甚少。尽管光化学风化和生态冠的形成同时在环境中发生,但在这项工作中,我们系统地评估了光化学风化对聚合物(聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚苯乙烯)物理化学性质的影响,以及这种影响如何影响 DOM(苏万尼河腐殖酸、富里酸和天然有机物)相对于原始聚合物的吸附。原始聚合物最初具有不同且独特的物理化学表面特性,但在老化后,它们在表面特性方面变得更加相似。光化学风化导致聚合物膜厚度减小、表面粗糙度增加和亲水性增加。聚合物表面上的 DOM 吸附层导致更可比的润湿性,有效地掩盖了初始聚合物特性。总的来说,这项研究探索了在模拟环境条件的实验室研究中聚合物经历的物理化学变化。了解这些变化是合理化和预测过程和相互作用(如决定塑料在环境中命运的异质聚集)的第一步。