Farago Paulo Vitor, Camargo Guilherme Dos Anjos, Mendes Matheus Benedito, Semianko Betina Christi, Camilo Junior Alexandre, Dias Daniele Toniolo, Lara Lucas Stori de, Novatski Andressa, Mendes Nadal Jessica, Manfron Jane, Majumdar Soumyajit, Khan Ikhlas A
Laboratory of Drug Development and Industrial Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, 38677, USA.
Laboratory of Drug Development and Industrial Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil.
J Mol Graph Model. 2024 Jan;126:108625. doi: 10.1016/j.jmgm.2023.108625. Epub 2023 Sep 13.
Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO - LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV-Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.
他克莫司(TAC)是一种天然来源的药物,可用于局部应用以控制自身免疫性皮肤病,如特应性皮炎、银屑病和白癜风。基于量子力学理论通过求解n体问题的薛定谔方程进行的计算模拟,可以对药物的几何结构、电荷分布和偶极矩、电子能级和分子轨道、电子跃迁以及振动跃迁进行理论计算。此外,开发含有TAC的新型纳米技术递送系统可以作为一种减少局部应用剂量、增加皮肤滞留量并减少由于控释模式导致的报告副作用的方法。首先,本文致力于通过使用五种半经验(SE)方法和一种密度泛函理论(DFT)方法来获取TAC的分子、电子和振动数据,以便通过计算模拟扩展对药物性质的认识。然后,本研究通过溶剂置换后的界面聚合物沉积制备了负载TAC的聚(ε-己内酯)纳米胶囊,并使用Franz扩散池和光声光谱研究了体外药物渗透。在SE/SE、SE/DFT和DFT/DFT这三种方案中对计算模拟进行了比较,其中第一种方法代表用于几何优化的过程,第二种方法用于提取电子和振动性质。计算数据显示与TAC的几何结构描述和电子性质相符,在最高占据分子轨道-最低未占据分子轨道能隙(Δ)和偶极值方面存在一些差异。SE/DFT和DFT/DFT方法对紫外-可见光谱、红外光谱和拉曼光谱呈现出更好的药物描述,与实验值的偏差较小。Franz池模型表明,与负载药物的聚(ε-己内酯)纳米胶囊相比,TAC从溶液中穿过Strat-M®膜的递送量更多。光声光谱分析表明,这些纳米胶囊在Strat-M®膜中的保留量更多,这对于局部应用是有利的。
Spectrochim Acta A Mol Biomol Spectrosc. 2015-3-15
Spectrochim Acta A Mol Biomol Spectrosc. 2012-5-14
Spectrochim Acta A Mol Biomol Spectrosc. 2013-6-20
Spectrochim Acta A Mol Biomol Spectrosc. 2015-2-5
Spectrochim Acta A Mol Biomol Spectrosc. 2014-11-11
Spectrochim Acta A Mol Biomol Spectrosc. 2013-11-9
Spectrochim Acta A Mol Biomol Spectrosc. 2015-2-5
Spectrochim Acta A Mol Biomol Spectrosc. 2013-11-7