文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结合无监督、监督和基于规则的学习:以电子健康记录中检测患者过敏为例。

Combining unsupervised, supervised and rule-based learning: the case of detecting patient allergies in electronic health records.

机构信息

Department of Information Systems, University of Agder, Kristiansand, Norway.

Department of Technology and eHealth, Sørlandet Hospital Trust, Kristiansand, Norway.

出版信息

BMC Med Inform Decis Mak. 2023 Sep 18;23(1):188. doi: 10.1186/s12911-023-02271-8.


DOI:10.1186/s12911-023-02271-8
PMID:37723446
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10507898/
Abstract

BACKGROUND: Data mining of electronic health records (EHRs) has a huge potential for improving clinical decision support and to help healthcare deliver precision medicine. Unfortunately, the rule-based and machine learning-based approaches used for natural language processing (NLP) in healthcare today all struggle with various shortcomings related to performance, efficiency, or transparency. METHODS: In this paper, we address these issues by presenting a novel method for NLP that implements unsupervised learning of word embeddings, semi-supervised learning for simplified and accelerated clinical vocabulary and concept building, and deterministic rules for fine-grained control of information extraction. The clinical language is automatically learnt, and vocabulary, concepts, and rules supporting a variety of NLP downstream tasks can further be built with only minimal manual feature engineering and tagging required from clinical experts. Together, these steps create an open processing pipeline that gradually refines the data in a transparent way, which greatly improves the interpretable nature of our method. Data transformations are thus made transparent and predictions interpretable, which is imperative for healthcare. The combined method also has other advantages, like potentially being language independent, demanding few domain resources for maintenance, and able to cover misspellings, abbreviations, and acronyms. To test and evaluate the combined method, we have developed a clinical decision support system (CDSS) named Information System for Clinical Concept Searching (ICCS) that implements the method for clinical concept tagging, extraction, and classification. RESULTS: In empirical studies the method shows high performance (recall 92.6%, precision 88.8%, F-measure 90.7%), and has demonstrated its value to clinical practice. Here we employ a real-life EHR-derived dataset to evaluate the method's performance on the task of classification (i.e., detecting patient allergies) against a range of common supervised learning algorithms. The combined method achieves state-of-the-art performance compared to the alternative methods we evaluate. We also perform a qualitative analysis of common word embedding methods on the task of word similarity to examine their potential for supporting automatic feature engineering for clinical NLP tasks. CONCLUSIONS: Based on the promising results, we suggest more research should be aimed at exploiting the inherent synergies between unsupervised, supervised, and rule-based paradigms for clinical NLP.

摘要

背景:电子健康记录(EHR)的数据挖掘在改善临床决策支持和帮助医疗保健提供精准医学方面具有巨大潜力。不幸的是,当今用于医疗保健的基于规则和基于机器学习的自然语言处理(NLP)方法都存在与性能、效率或透明度相关的各种缺陷。

方法:在本文中,我们通过提出一种新的 NLP 方法来解决这些问题,该方法实现了词嵌入的无监督学习、简化和加速临床词汇和概念构建的半监督学习,以及用于精细控制信息提取的确定性规则。临床语言是自动学习的,仅需要临床专家进行最少的手动特征工程和标记,就可以构建支持各种 NLP 下游任务的词汇、概念和规则。这些步骤共同创建了一个开放的处理管道,以透明的方式逐步改进数据,从而大大提高了我们方法的可解释性。因此,数据转换是透明的,预测是可解释的,这对医疗保健至关重要。该联合方法还有其他优点,例如可能与语言无关,对维护所需的领域资源要求很少,并且能够涵盖拼写错误、缩写和首字母缩略词。为了测试和评估联合方法,我们开发了一个名为信息系统临床概念搜索(ICCS)的临床决策支持系统(CDSS),该系统实现了用于临床概念标记、提取和分类的方法。

结果:在实证研究中,该方法表现出很高的性能(召回率 92.6%,精度 88.8%,F 度量 90.7%),并已证明其对临床实践的价值。在这里,我们使用真实的 EHR 衍生数据集来评估该方法在分类任务(即检测患者过敏)上的性能,与一系列常见的监督学习算法进行比较。与我们评估的替代方法相比,联合方法实现了最先进的性能。我们还对任务词相似性上的常见词嵌入方法进行了定性分析,以检验它们在支持临床 NLP 任务的自动特征工程方面的潜力。

结论:基于有希望的结果,我们建议应进行更多的研究,以挖掘临床 NLP 中无监督、监督和基于规则的范式之间的内在协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/bc3d9afa9a0e/12911_2023_2271_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/a57fde974a9f/12911_2023_2271_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/0298e765ef54/12911_2023_2271_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/8cd0fad49474/12911_2023_2271_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/78d3275ddc84/12911_2023_2271_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/dfbc89b37082/12911_2023_2271_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/3a273b915c61/12911_2023_2271_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/580ab48fd2ac/12911_2023_2271_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/4b8d0a2fc3e7/12911_2023_2271_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/cbf99078bc2c/12911_2023_2271_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/eb4e74472b7e/12911_2023_2271_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/097c25f8781f/12911_2023_2271_Figc_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/794f7eaff828/12911_2023_2271_Figd_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/a75e12e68708/12911_2023_2271_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/0790010a0389/12911_2023_2271_Fige_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/de5253a3011a/12911_2023_2271_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/bc3d9afa9a0e/12911_2023_2271_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/a57fde974a9f/12911_2023_2271_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/0298e765ef54/12911_2023_2271_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/8cd0fad49474/12911_2023_2271_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/78d3275ddc84/12911_2023_2271_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/dfbc89b37082/12911_2023_2271_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/3a273b915c61/12911_2023_2271_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/580ab48fd2ac/12911_2023_2271_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/4b8d0a2fc3e7/12911_2023_2271_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/cbf99078bc2c/12911_2023_2271_Figb_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/eb4e74472b7e/12911_2023_2271_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/097c25f8781f/12911_2023_2271_Figc_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/794f7eaff828/12911_2023_2271_Figd_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/a75e12e68708/12911_2023_2271_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/0790010a0389/12911_2023_2271_Fige_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/de5253a3011a/12911_2023_2271_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3747/10507898/bc3d9afa9a0e/12911_2023_2271_Fig11_HTML.jpg

相似文献

[1]
Combining unsupervised, supervised and rule-based learning: the case of detecting patient allergies in electronic health records.

BMC Med Inform Decis Mak. 2023-9-18

[2]
Machine learning-driven clinical decision support system for concept-based searching: a field trial in a Norwegian hospital.

BMC Med Inform Decis Mak. 2023-1-10

[3]
Disease Concept-Embedding Based on the Self-Supervised Method for Medical Information Extraction from Electronic Health Records and Disease Retrieval: Algorithm Development and Validation Study.

J Med Internet Res. 2021-1-27

[4]
A clinical text classification paradigm using weak supervision and deep representation.

BMC Med Inform Decis Mak. 2019-1-7

[5]
ARCH: Large-scale Knowledge Graph via Aggregated Narrative Codified Health Records Analysis.

medRxiv. 2023-5-21

[6]
A comparison of word embeddings for the biomedical natural language processing.

J Biomed Inform. 2018-9-12

[7]
Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.

J Biomed Inform. 2019-2

[8]
Named Entity Recognition in Chinese Clinical Text Using Deep Neural Network.

Stud Health Technol Inform. 2015

[9]
Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts.

Health Informatics J. 2023

[10]
Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.

J Med Internet Res. 2017-11-6

引用本文的文献

[1]
From manual clinical criteria to machine learning algorithms: Comparing outcome endpoints derived from diverse electronic health record data modalities.

PLOS Digit Health. 2025-5-14

[2]
Artificial intelligence-enabled safety monitoring in Alzheimer's disease clinical trials.

J Prev Alzheimers Dis. 2025-1

[3]
The Neck-Persistency-Net: a three-dimensional, convolution, deep neural network aids in distinguishing vital from non-vital persistent cervical lymph nodes in advanced head and neck squamous cell carcinoma after primary concurrent radiochemotherapy.

Eur Arch Otorhinolaryngol. 2024-11

本文引用的文献

[1]
Machine learning-driven clinical decision support system for concept-based searching: a field trial in a Norwegian hospital.

BMC Med Inform Decis Mak. 2023-1-10

[2]
Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis.

IEEE J Biomed Health Inform. 2017-10-27

[3]
Clinical information extraction applications: A literature review.

J Biomed Inform. 2017-11-21

[4]
Automated problem list generation and physicians perspective from a pilot study.

Int J Med Inform. 2017-9

[5]
Learning from heterogeneous temporal data in electronic health records.

J Biomed Inform. 2017-1

[6]
MediBoost: a Patient Stratification Tool for Interpretable Decision Making in the Era of Precision Medicine.

Sci Rep. 2016-11-30

[7]
A Quantitative and Qualitative Evaluation of Sentence Boundary Detection for the Clinical Domain.

AMIA Jt Summits Transl Sci Proc. 2016-7-20

[8]
Learning Low-Dimensional Representations of Medical Concepts.

AMIA Jt Summits Transl Sci Proc. 2016-7-20

[9]
LSTM: A Search Space Odyssey.

IEEE Trans Neural Netw Learn Syst. 2016-7-8

[10]
Introduction to machine learning: k-nearest neighbors.

Ann Transl Med. 2016-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索