Ahn Youngjun, Zhang Jiawei, Chu Zhaodong, Walko Donald A, Hruszkewycz Stephan O, Fullerton Eric E, Evans Paul G, Wen Haidan
Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
ACS Nano. 2023 Oct 10;17(19):18843-18849. doi: 10.1021/acsnano.3c03628. Epub 2023 Sep 19.
Dynamical control of thermal transport at the nanoscale provides a time-domain strategy for optimizing thermal management in nanoelectronics, magnetic devices, and thermoelectric devices. However, the rate of change available for thermal switches and regulators is limited to millisecond time scales, calling for a faster modulation speed. Here, time-resolved X-ray diffraction measurements and thermal transport modeling reveal an ultrafast modulation of the interfacial thermal conductance of an FeRh/MgO heterostructure as a result of a structural phase transition driven by optical excitation. Within 90 ps after optical excitation, the interfacial thermal conductance is reduced by a factor of 5 and lasts for a few nanoseconds, in comparison to the value at the equilibrium FeRh/MgO interface. The experimental results combined with thermal transport calculations suggest that the reduced interfacial thermal conductance results from enhanced phonon scattering at the interface where the lattice experiences transient in-plane biaxial stress due to the structural phase transition of FeRh. Our results suggest that optically driven phase transitions can be utilized for ultrafast nanoscale thermal switches for device application.
纳米尺度热输运的动态控制为优化纳米电子学、磁性器件和热电器件中的热管理提供了一种时域策略。然而,热开关和调节器可用的变化速率限于毫秒时间尺度,这就需要更快的调制速度。在此,时间分辨X射线衍射测量和热输运建模揭示了由于光激发驱动的结构相变,FeRh/MgO异质结构的界面热导发生了超快调制。与平衡态FeRh/MgO界面处的值相比,在光激发后90皮秒内,界面热导降低了5倍,并持续几纳秒。实验结果与热输运计算相结合表明,界面热导降低是由于FeRh结构相变导致晶格在界面处经历瞬态面内双轴应力,从而增强了界面处的声子散射。我们的结果表明,光驱动相变可用于超快纳米尺度热开关的器件应用。