Suppr超能文献

利用水稻超级泛基因组鉴定 TTL1 控制耐热性和粒长的天然等位变异。

Identification of natural allelic variation in TTL1 controlling thermotolerance and grain size by a rice super pan-genome.

机构信息

Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, 350003, China.

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.

出版信息

J Integr Plant Biol. 2023 Dec;65(12):2541-2551. doi: 10.1111/jipb.13568. Epub 2023 Oct 25.

Abstract

Continuously increasing global temperatures present great challenges to food security. Grain size, one of the critical components determining grain yield in rice (Oryza sativa L.), is a prime target for genetic breeding. Thus, there is an immediate need for genetic improvement in rice to maintain grain yield under heat stress. However, quantitative trait loci (QTLs) endowing heat stress tolerance and grain size in rice are extremely rare. Here, we identified a novel negative regulator with pleiotropic effects, Thermo-Tolerance and grain Length 1 (TTL1), from the super pan-genomic and transcriptomic data. Loss-of-function mutations in TTL1 enhanced heat tolerance, and caused an increase in grain size by coordinating cell expansion and proliferation. TTL1 was shown to function as a transcriptional regulator and localized to the nucleus and cell membrane. Furthermore, haplotype analysis showed that hap and hap of TTL1 were obviously correlated with variations of thermotolerance and grain size in a core collection of cultivars. Genome evolution analysis of available rice germplasms suggested that TTL1 was selected during domestication of the indica and japonica rice subspecies, but still had much breeding potential for increasing grain length and thermotolerance. These findings provide insights into TTL1 as a novel potential target for the development of high-yield and thermotolerant rice varieties.

摘要

不断上升的全球气温给食品安全带来了巨大挑战。粒型是决定水稻(Oryza sativa L.)产量的关键因素之一,是遗传育种的主要目标。因此,迫切需要对水稻进行遗传改良,以维持其在热胁迫下的产量。然而,赋予水稻耐热性和粒型的数量性状位点(QTLs)极为罕见。在这里,我们从超级泛基因组和转录组数据中鉴定出一个具有多效性的新型负调控因子,耐热性和粒长 1(TTL1)。TTL1 的功能丧失突变增强了耐热性,并通过协调细胞扩张和增殖导致粒长增加。TTL1 作为转录调节剂发挥作用,定位于细胞核和细胞膜。此外,单倍型分析表明,TTL1 的 hap 和 hap 与品种核心群中耐热性和粒型的变化明显相关。对现有水稻种质资源的基因组进化分析表明,TTL1 在籼稻和粳稻亚种的驯化过程中被选择,但在增加粒长和耐热性方面仍有很大的育种潜力。这些发现为 TTL1 作为开发高产耐热水稻品种的一个新的潜在目标提供了思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验