Zheng Dingguo, Huang Siyuan, Li Jun, Tian Yuan, Zhang Yongzhao, Li Zhongwen, Tian Huanfang, Yang Huaixin, Li Jianqi
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
Nat Commun. 2023 Sep 20;14(1):5857. doi: 10.1038/s41467-023-41624-9.
Strong electron-photon interactions occurring in a dielectric laser accelerator provide the potential for development of a compact electron accelerator. Theoretically, metallic materials exhibiting notable surface plasmon-field enhancements can possibly generate a high electron acceleration capability. Here, we present a design for metallic material-based on-chip laser-driven accelerators that show a remarkable electron acceleration capability, as demonstrated in ultrafast electron microscopy investigations. Under phase-matching conditions, efficient and continuous acceleration of free electrons on a periodic nanostructure can be achieved. Importantly, an asymmetric spectral structure in which the vast majority of the electrons are in the energy-gain states has been obtained by means of a periodic bowtie-structure accelerator. Due to the presence of surface plasmon enhancement and nonlinear optical effects, the maximum acceleration gradient can reach as high as 0.335 GeV/m. This demonstrates that metallic laser accelerator could provide a way to develop compact accelerators on chip.
介电激光加速器中发生的强电子 - 光子相互作用为紧凑型电子加速器的发展提供了潜力。从理论上讲,表现出显著表面等离子体场增强的金属材料可能具有高电子加速能力。在此,我们展示了一种基于金属材料的片上激光驱动加速器的设计,该加速器表现出卓越的电子加速能力,这在超快电子显微镜研究中得到了证实。在相位匹配条件下,可以实现自由电子在周期性纳米结构上的高效连续加速。重要的是,通过周期性蝴蝶结结构加速器获得了一种不对称光谱结构,其中绝大多数电子处于能量增益状态。由于表面等离子体增强和非线性光学效应的存在,最大加速梯度可高达0.335 GeV/m。这表明金属激光加速器可为在芯片上开发紧凑型加速器提供一种途径。