Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.
Laboratoire d'InfoRmatique en Image et Systèmes d'information, CNRS, Université Claude Bernard, Lyon,, France.
Behav Res Methods. 2024 Aug;56(5):4930-4945. doi: 10.3758/s13428-023-02232-z. Epub 2023 Sep 20.
Everyone learns differently, but individual performance is often ignored in favour of a group-level analysis. Using data from four different experiments, we show that generalised linear mixed models (GLMMs) and extensions can be used to examine individual learning patterns. Producing ellipsoids and cluster analyses based on predicted random effects, individual learning patterns can be identified, clustered and used for comparisons across various experimental conditions or groups. This analysis can handle a range of datasets including discrete, continuous, censored and non-censored, as well as different experimental conditions, sample sizes and trial numbers. Using this approach, we show that learning a face-named paired associative task produced individuals that can learn quickly, with the performance of some remaining high, but with a drop-off in others, whereas other individuals show poor performance throughout the learning period. We see this more clearly in a virtual navigation spatial learning task (NavWell). Two prominent clusters of learning emerged, one showing individuals who produced a rapid learning and another showing a slow and gradual learning pattern. Using data from another spatial learning task (Sea Hero Quest), we show that individuals' performance generally reflects their age category, but not always. Overall, using this analytical approach may help practitioners in education and medicine to identify those individuals who might need extra help and attention. In addition, identifying learning patterns may enable further investigation of the underlying neural, biological, environmental and other factors associated with these individuals.
每个人的学习方式都不同,但个体表现往往被忽视,而倾向于进行群体层面的分析。通过四个不同实验的数据,我们表明广义线性混合模型(GLMM)及其扩展可以用于研究个体学习模式。通过基于预测随机效应生成椭球和聚类分析,可以识别、聚类和比较个体学习模式,并应用于各种实验条件或群体。这种分析可以处理一系列数据集,包括离散、连续、删失和非删失数据,以及不同的实验条件、样本量和试验次数。使用这种方法,我们表明在学习人脸命名的联想任务时,有些个体学习速度很快,表现良好,但有些个体则表现较差。在虚拟导航空间学习任务(NavWell)中,这种情况更加明显。我们发现了两个突出的学习群体,一个群体的个体学习速度很快,另一个群体的个体学习速度较慢。使用另一个空间学习任务(Sea Hero Quest)的数据,我们表明个体的表现通常反映了他们的年龄类别,但并非总是如此。总的来说,使用这种分析方法可能有助于教育和医学领域的从业者识别那些可能需要额外帮助和关注的个体。此外,识别学习模式还可以进一步研究与这些个体相关的神经、生物、环境和其他因素。