Suppr超能文献

智能手机成像流式细胞术用于高通量单细胞分析。

Smartphone Imaging Flow Cytometry for High-Throughput Single-Cell Analysis.

机构信息

Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland.

出版信息

Anal Chem. 2023 Oct 3;95(39):14526-14532. doi: 10.1021/acs.analchem.3c03213. Epub 2023 Sep 21.

Abstract

We present a portable imaging flow cytometer comprising a smartphone, a small-footprint optical framework, and a PDMS-based microfluidic device. Flow cytometric analysis is performed in a sheathless manner via elasto-inertial focusing with a custom-written Android program, integrating a graphical user interface (GUI) that provides a high degree of user control over image acquisition. The proposed system offers two different operational modes. First, "post-processing" mode enables particle/cell sizing at throughputs of up to 67 000 particles/s. Alternatively, "real-time" mode allows for integrated cell/particle classification with machine learning at throughputs of 100 particles/s. To showcase the efficacy of our platform, polystyrene particles are accurately enumerated within heterogeneous populations using the post-processing mode. In real-time mode, an open-source machine learning algorithm is deployed within a custom-developed Android application to classify samples containing cells of similar size but with different morphologies. The flow cytometer can extract high-resolution bright-field images with a spatial resolution <700 nm using the developed machine learning-based algorithm, achieving classification accuracies of 97% and 93% for Jurkat and EL4 cells, respectively. Our results confirm that the smartphone imaging flow cytometer (sIFC) is capable of both enumerating single particles in flow and identifying morphological features with high resolution and minimal hardware.

摘要

我们展示了一种由智能手机、小尺寸光学框架和基于 PDMS 的微流控设备组成的便携式成像流式细胞仪。通过使用自定义编写的 Android 程序进行无鞘流弹性惯性聚焦的方式进行流式细胞分析,该程序集成了一个图形用户界面 (GUI),提供了对图像采集的高度用户控制。该系统提供了两种不同的操作模式。首先,“后处理”模式可在高达 67000 个/秒的流速下进行颗粒/细胞尺寸测量。或者,“实时”模式允许在 100 个/秒的流速下进行集成的细胞/颗粒分类和机器学习。为了展示我们平台的功效,在后处理模式下,使用该平台可以准确地对异质群体中的聚苯乙烯颗粒进行计数。在实时模式下,使用一个开源的机器学习算法和我们自主开发的 Android 应用程序来对含有相似大小但具有不同形态的细胞的样本进行分类。该流式细胞仪可以使用开发的基于机器学习的算法提取具有<700nm 空间分辨率的高分辨率明场图像,对于 Jurkat 和 EL4 细胞,分类准确率分别达到 97%和 93%。我们的结果证实,智能手机成像流式细胞仪(sIFC)能够在流中对单个颗粒进行计数,并以最小的硬件实现高分辨率和识别形态特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验