Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan.
Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
Neurosci Res. 2023 Dec;197:25-30. doi: 10.1016/j.neures.2023.09.004. Epub 2023 Sep 19.
Kinesin motor proteins play crucial roles in anterograde transport of cargo vesicles in neurons, moving them along axons from the cell body towards the synaptic region. Not only the transport force and velocity of single motor protein, but also the number of kinesin molecules involved in transporting a specific cargo, is pivotal for synapse formation. This collective transport by multiple kinesins ensures stable and efficient cargo transport in neurons. Abnormal increases or decreases in the number of engaged kinesin molecules per cargo could potentially act as biomarkers for neurodegenerative diseases such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), spastic paraplegia, polydactyly syndrome, and virus transport disorders. We review here a model constructed using physical measurements to quantify the number of kinesin molecules associated with their cargo, which could shed light on the molecular mechanisms of neurodegenerative diseases related to axonal transport.
驱动蛋白马达蛋白在神经元中货物囊泡的正向运输中发挥着关键作用,它们沿着轴突从细胞体向突触区域移动。不仅单个马达蛋白的运输力和速度,而且参与运输特定货物的驱动蛋白分子的数量,对于突触形成都是至关重要的。这种由多个驱动蛋白进行的集体运输确保了神经元中货物的稳定和高效运输。货物上结合的驱动蛋白分子数量的异常增加或减少,可能成为神经退行性疾病(如阿尔茨海默病、帕金森病、肌萎缩性侧索硬化症、痉挛性截瘫、多指畸形综合征和病毒运输障碍)的生物标志物。我们在这里回顾了一个使用物理测量来量化与货物结合的驱动蛋白分子数量的模型,该模型可能揭示与轴突运输相关的神经退行性疾病的分子机制。