Suppr超能文献

孤独感和抑郁:基于三项大型全基因组关联研究数据的双向孟德尔随机化分析。

Loneliness and depression: bidirectional mendelian randomization analyses using data from three large genome-wide association studies.

机构信息

Department of Psychology, University of Arizona, Tucson, AZ, USA.

Department of Epidemiology and Biostatistics, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.

出版信息

Mol Psychiatry. 2023 Nov;28(11):4594-4601. doi: 10.1038/s41380-023-02259-w. Epub 2023 Sep 21.

Abstract

Major depression (MD) is a serious psychiatric illness afflicting nearly 5% of the world's population. A large correlational literature suggests that loneliness is a prospective risk factor for MD; correlational assocations of this nature may be confounded for a variety of reasons. This report uses Mendelian Randomization (MR) to examine potentially causal associations between loneliness and MD. We report on analyses using summary statistics from three large genome wide association studies (GWAS). MR analyses were conducted using three independent sources of GWAS summary statistics. In the first set of analyses, we used available summary statistics from an extant GWAS of loneliness to predict MD risk. We used two sources of outcome data: the Psychiatric Genomics Consortium (PGC) meta-analysis of MD (PGC-MD; N = 142,646) and the Million Veteran Program (MVP-MD; N = 250,215). Finally, we reversed analyses using data from the MVP and PGC samples to identify risk variants for MD and used loneliness outcome data from UK Biobank. We find robust evidence for a bidirectional causal relationship between loneliness and MD, including between loneliness, depression cases status, and a continuous measure of depressive symptoms. The estimates remained significant across several sensitivity analyses, including models that account for horizontal pleiotropy. This paper provides the first genetically-informed evidence that reducing loneliness may play a causal role in decreasing risk for depressive illness, and these findings support efforts to reduce loneliness in order to prevent or ameliorate MD. Discussion focuses on the public health significance of these findings, especially in light of the SARS-CoV-2 pandemic.

摘要

重度抑郁症(MD)是一种严重的精神疾病,影响着全球近 5%的人口。大量相关文献表明,孤独是 MD 的一个前瞻性风险因素;这种性质的相关性可能由于各种原因而混淆。本报告使用孟德尔随机化(MR)来检查孤独感与 MD 之间潜在的因果关系。我们报告了使用三项大型全基因组关联研究(GWAS)汇总统计数据进行的分析。MR 分析使用了三个独立的 GWAS 汇总统计数据源。在第一组分析中,我们使用现有的孤独感 GWAS 汇总统计数据来预测 MD 风险。我们使用了两种结果数据来源:精神疾病基因组学联盟(PGC)的 MD 荟萃分析(PGC-MD;N=142646)和百万退伍军人计划(MVP-MD;N=250215)。最后,我们使用 MVP 和 PGC 样本的数据进行反向分析,以确定 MD 的风险变异,并使用英国生物银行的孤独感结果数据。我们发现孤独感和 MD 之间存在双向因果关系的有力证据,包括孤独感、抑郁病例状态和抑郁症状的连续衡量标准。这些估计在几项敏感性分析中仍然显著,包括考虑水平遗传异质性的模型。本文提供了第一个基于遗传的证据,表明减少孤独感可能在降低抑郁疾病风险方面发挥因果作用,这些发现支持减少孤独感以预防或改善 MD 的努力。讨论重点关注这些发现的公共卫生意义,特别是在 SARS-CoV-2 大流行的背景下。

相似文献

引用本文的文献

3

本文引用的文献

1
Mendelian randomization.孟德尔随机化
Nat Rev Methods Primers. 2022 Feb 10;2. doi: 10.1038/s43586-021-00092-5.
2
Social Isolation and Loneliness as Medical Issues.社会孤立和孤独作为医学问题。
N Engl J Med. 2023 Jan 19;388(3):193-195. doi: 10.1056/NEJMp2208029. Epub 2023 Jan 14.
10
Intimate Relationships and Depression: Searching for Causation in the Sea of Association.亲密关系与抑郁:在关联之海中探寻因果关系
Annu Rev Clin Psychol. 2021 May 7;17:233-258. doi: 10.1146/annurev-clinpsy-081219-103323. Epub 2021 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验