Heuer Katja, Traut Nicolas, de Sousa Alexandra Allison, Valk Sofie Louise, Clavel Julien, Toro Roberto
Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, Paris, France.
Centre for Health and Cognition, Bath Spa University, Bath, United Kingdom.
Elife. 2023 Sep 22;12:e85907. doi: 10.7554/eLife.85907.
The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed two groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.
大脑折叠过程被认为在大脑和小脑的发育及组织中发挥着重要作用。由于小脑小叶体积小且数量众多,对小脑折叠的研究颇具挑战性。因此,人们对其解剖学多样性和进化了解甚少。我们构建了一个来自56种哺乳动物的组织学数据开放集,并手动分割了大脑和小脑。我们开发了测量小脑小叶几何形状和估计分子层厚度的方法。我们使用系统发育比较方法来研究小脑折叠的多样性和进化及其与大脑解剖结构的关系。我们的结果表明,小脑和大脑解剖结构的进化遵循一个稳定选择过程。我们观察到两组表型在进化过程中协同变化:一组是“多样的”表型——与体型一起在几个数量级上变化,另一组是“稳定的”表型,在不同物种间变化幅度小于1个数量级。我们的分析证实了不同物种间大脑和小脑体积之间的强相关性,此外还表明,大的小脑比小的小脑折叠程度更高。与小脑表面积的极端变化相比,小叶解剖结构和分子层厚度变化较小,在较大的小脑中增加幅度更小。我们讨论了这些发现如何能为小脑折叠的多样性和进化、小脑和大脑折叠的机制以及它们对不同物种大脑组织的潜在影响提供新的见解。