Suppr超能文献

并非所有大脑都是一样的:进化中大脑缩放的新观点。

Not all brains are made the same: new views on brain scaling in evolution.

作者信息

Herculano-Houzel Suzana

机构信息

Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, e Instituto Nacional de Neurociência Translacional, Rio de Janeiro, Brasil.

出版信息

Brain Behav Evol. 2011;78(1):22-36. doi: 10.1159/000327318. Epub 2011 Jun 17.

Abstract

Evolution has generated mammalian brains that vary by a factor of over 100,000 in mass. Despite such tremendous diversity, brain scaling in mammalian evolution has tacitly been considered a homogeneous phenomenon in terms of numbers of neurons, neuronal density, and the ratio between glial and neuronal cells, with brains of different sizes viewed as similarly scaled-up or scaled-down versions of a shared basic plan. According to this traditional view, larger brains would have more neurons, smaller neuronal densities (and, hence, larger neurons), and larger glia/neuron ratios than smaller brains. Larger brains would also have a cerebellum that maintains its relative size constant and a cerebral cortex that becomes relatively larger to the point that brain evolution is often equated with cerebral cortical expansion. Here I review our recent data on the numbers of neuronal and nonneuronal cells that compose the brains of 28 mammalian species belonging to 3 large clades (Eulipotyphla, Glires, and Primata, plus the related Scandentia) and show that, contrary to the traditional notion of shared brain scaling, both the cerebral cortex and the cerebellum scale in size as clade-specific functions of their numbers of neurons. As a consequence, neuronal density and the glia/neuron ratio do not scale universally with structure mass and, most importantly, mammalian brains of a similar size can hold very different numbers of neurons. Remarkably, the increased relative size of the cerebral cortex in larger brains does not reflect an increased relative concentration of neurons in the structure. Instead, the cerebral cortex and cerebellum appear to gain neurons coordinately across mammalian species. Brain scaling in evolution, hence, should no longer be equated with an increasing dominance of the cerebral cortex but rather with the concerted addition of neurons to both the cerebral cortex and the cerebellum. Strikingly, all brains appear to gain nonneuronal cells in a similar fashion, with relatively constant nonneuronal cell densities. As a result, while brain size can no longer be considered a proxy for the number of brain neurons across mammalian brains in general, it is actually a very good proxy for the number of nonneuronal cells in the brain. Together, these data point to developmental mechanisms that underlie evolutionary changes in brain size in mammals: while the rules that determine how neurons are added to the brain during development have been largely free to vary in mammalian evolution across clades, the rules that determine how other cells are added in development have been mostly constrained and to this day remain largely similar both across brain structures and across mammalian groups.

摘要

进化产生了质量相差超过10万倍的哺乳动物大脑。尽管存在如此巨大的差异,但在哺乳动物进化过程中,大脑的缩放一直被默认是一种在神经元数量、神经元密度以及神经胶质细胞与神经元细胞比例方面的同质现象,不同大小的大脑被视为共享基本结构的类似放大或缩小版本。根据这种传统观点,较大的大脑比较小的大脑拥有更多的神经元、更小的神经元密度(因此神经元更大)以及更大的神经胶质细胞/神经元比例。较大的大脑还会有一个相对大小保持恒定的小脑,以及一个相对变大的大脑皮层,以至于大脑进化常常等同于大脑皮层的扩张。在这里,我回顾了我们最近关于构成3个大分支(真盲缺目、啮齿目和灵长目,加上相关的树鼩目)的28种哺乳动物大脑的神经元和非神经元细胞数量的数据,结果表明,与共享大脑缩放的传统观念相反,大脑皮层和小脑的大小缩放是其神经元数量的特定分支功能。因此,神经元密度和神经胶质细胞/神经元比例并不随结构质量普遍缩放,而且最重要的是,大小相似的哺乳动物大脑可能拥有非常不同数量的神经元。值得注意的是,较大大脑中大脑皮层相对大小的增加并不反映该结构中神经元相对浓度的增加。相反,大脑皮层和小脑在哺乳动物物种中似乎是协调地增加神经元。因此,进化中的大脑缩放不应再等同于大脑皮层日益增加的主导地位,而应等同于大脑皮层和小脑神经元的协同增加。令人惊讶的是,所有大脑似乎都以类似的方式增加非神经元细胞,非神经元细胞密度相对恒定。结果,虽然一般来说大脑大小不能再被视为哺乳动物大脑中脑神经元数量的代表,但它实际上是大脑中非神经元细胞数量的一个非常好的代表。总之,这些数据指向了哺乳动物大脑大小进化变化背后的发育机制:虽然在哺乳动物进化过程中,决定在发育过程中如何向大脑添加神经元的规则在不同分支中基本可以自由变化,但决定在发育过程中如何添加其他细胞的规则大多受到限制,直到今天,无论是在大脑结构之间还是在哺乳动物群体之间,这些规则在很大程度上仍然相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验