Suppr超能文献

微压通过促进微生物磷酸盐矿化和溶解以及硫酸盐还原来促进深部储层中的内源磷释放。

Micro-pressure promotes endogenous phosphorus release in a deep reservoir by favouring microbial phosphate mineralisation and solubilisation coupled with sulphate reduction.

机构信息

School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin 300350, China.

Hebei Collaborative Innovation Center for the Regulation and Comprehensive Management of Water Resources and Water Environment, Hebei University of Engineering, Handan 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China.

出版信息

Water Res. 2023 Oct 15;245:120647. doi: 10.1016/j.watres.2023.120647. Epub 2023 Sep 18.

Abstract

Deep reservoirs vary in their hydrostatic pressure owing to artificial water level control. The potential migration of phosphorus (P) in reservoir sediments raises the risk of harmful algal blooms. To ascertain the mechanisms of endogenous P release in reservoirs, we characterised aquatic microbial communities associated with coupled iron (Fe), P and sulphur (S) cycling at the sediment-water interface. The responses of microbial communities to hydrostatic pressures of 0.2-0.7 mega pascals (MPa; that is, micro-pressures) were investigated through a 30-day simulation experiment. Our findings unravelled a potential mechanism that micro-pressure enhanced the solubilisation of Fe/aluminium (Al)-bound P caused by microbially-driven sulphate reduction, leading to endogenous P release in the deep reservoir. Although the vertical distribution of labile Fe was not affected by pressure changes, we did observe Fe resupply at sediment depths of 2-5 cm. Metagenomic analysis revealed increased abundances of functional genes for P mineralisation (phoD, phoA), P solubilisation (pqqC, ppx-gppA) and sulphate reduction (cysD, cysC) in sediments subjected to micro-pressure, which contrasted with the pattern of S oxidation gene (soxB). There was a tight connection between P and S cycling-related microbial communities, based on significant positive correlations between labile element (P and S) concentrations and functional gene (phoD, cysD) abundances. This provided strong support that Fe-P-S coupling processes were governed by micro-pressure through modulation of P and S cycling-related microbial functions. Key taxa involved in P and S cycling (for example, Bradyrhizobium, Methyloceanibacter) positively responded to micro-pressure and as such, indirectly drove P release from sediments by facilitating P mineralisation and solubilisation coupled with sulphate reduction.

摘要

深水库因人工水位控制而导致静压水头不同。水库沉积物中磷(P)的潜在迁移增加了有害藻类大量繁殖的风险。为了确定水库内源性 P 释放的机制,我们对与沉积物-水界面中铁(Fe)、P 和硫(S)循环偶联相关的水生微生物群落进行了特征描述。通过 30 天的模拟实验,研究了微生物群落对 0.2-0.7 兆帕斯卡(MPa;即微压)静压的响应。我们的研究结果揭示了一种潜在的机制,即微压增强了微生物驱动的硫酸盐还原作用导致的 Fe/铝(Al)结合 P 的溶解,从而导致深水库内源 P 的释放。尽管压力变化并未影响可利用 Fe 的垂直分布,但我们确实观察到在沉积物 2-5 厘米深处有 Fe 的补给。宏基因组分析显示,在受到微压作用的沉积物中,与 P 矿化(phoD、phoA)、P 溶解(pqqC、ppx-gppA)和硫酸盐还原(cysD、cysC)相关的功能基因丰度增加,而 S 氧化基因(soxB)的模式则相反。P 和 S 循环相关微生物群落之间存在紧密联系,这是基于可利用元素(P 和 S)浓度与功能基因(phoD、cysD)丰度之间存在显著正相关。这有力地表明,Fe-P-S 偶联过程受微压调控,通过调节 P 和 S 循环相关微生物功能来控制。与 P 和 S 循环相关的关键类群(例如,Bradyrhizobium、Methyloceanibacter)对微压有积极响应,通过促进 P 矿化和溶解以及与硫酸盐还原偶联,间接驱动 P 从沉积物中释放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验