Suppr超能文献

人工智能作为前列腺影像报告和数据系统分类 3 病例的诊断辅助工具:回顾性多中心队列研究结果。

Artificial intelligence as diagnostic aiding tool in cases of Prostate Imaging Reporting and Data System category 3: the results of retrospective multi-center cohort study.

机构信息

School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.

Department of Radiology, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.

出版信息

Abdom Radiol (NY). 2023 Dec;48(12):3757-3765. doi: 10.1007/s00261-023-03989-9. Epub 2023 Sep 22.

Abstract

PURPOSE

To study the effect of artificial intelligence (AI) on the diagnostic performance of radiologists in interpreting prostate mpMRI images of the PI-RADS 3 category.

METHODS

In this multicenter study, 16 radiologists were invited to interpret prostate mpMRI cases with and without AI. The study included a total of 87 cases initially diagnosed as PI-RADS 3 by radiologists without AI, with 28 cases being clinically significant cancers (csPCa) and 59 cases being non-csPCa. The study compared the diagnostic efficacy between readings without and with AI, the reading time, and confidence levels.

RESULTS

AI changed the diagnosis in 65 out of 87 cases. Among the 59 non-csPCa cases, 41 were correctly downgraded to PI-RADS 1-2, and 9 were incorrectly upgraded to PI-RADS 4-5. For the 28 csPCa cases, 20 were correctly upgraded to PI-RADS 4-5, and 5 were incorrectly downgraded to PI-RADS 1-2. Radiologists assisted by AI achieved higher diagnostic specificity and accuracy than those without AI [0.695 vs 0.000 and 0.736 vs 0.322, both P < 0.001]. Sensitivity with AI was not significantly different from that without AI [0.821 vs 1.000, P = 1.000]. AI reduced reading time significantly compared to without AI (mean: 351 seconds, P < 0.001). The diagnostic confidence score with AI was significantly higher than that without AI (Cohen Kappa: -0.016).

CONCLUSION

With the help of AI, there was an improvement in the diagnostic accuracy of PI-RADS category 3 cases by radiologists. There is also an increase in diagnostic efficiency and diagnostic confidence.

摘要

目的

研究人工智能(AI)对解读前列腺 mpMRI 图像 PI-RADS 3 类别的放射科医生诊断性能的影响。

方法

在这项多中心研究中,邀请了 16 名放射科医生对有和没有 AI 的前列腺 mpMRI 病例进行解读。研究共包括 87 例最初由没有 AI 的放射科医生诊断为 PI-RADS 3 的病例,其中 28 例为临床显著癌症(csPCa),59 例为非 csPCa。研究比较了有无 AI 阅读的诊断效果、阅读时间和置信度水平。

结果

AI 改变了 87 例病例中的 65 例诊断。在 59 例非 csPCa 病例中,41 例被正确降级为 PI-RADS 1-2,9 例被错误升级为 PI-RADS 4-5。在 28 例 csPCa 病例中,20 例被正确升级为 PI-RADS 4-5,5 例被错误降级为 PI-RADS 1-2。有 AI 辅助的放射科医生比没有 AI 辅助的放射科医生获得更高的诊断特异性和准确性[0.695 与 0.000 和 0.736 与 0.322,均 P < 0.001]。使用 AI 的敏感性与不使用 AI 时无显著差异[0.821 与 1.000,P = 1.000]。与不使用 AI 相比,使用 AI 显著减少了阅读时间(平均:351 秒,P < 0.001)。使用 AI 时的诊断置信度评分明显高于不使用 AI 时(Cohen Kappa:-0.016)。

结论

在 AI 的帮助下,放射科医生对 PI-RADS 3 类病例的诊断准确性有所提高。同时,诊断效率和诊断信心也有所提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验