Suppr超能文献

基于人工智能的注意力映射系统在多参数 MRI 检测前列腺癌中的多中心多读者评估。

Multicenter Multireader Evaluation of an Artificial Intelligence-Based Attention Mapping System for the Detection of Prostate Cancer With Multiparametric MRI.

机构信息

Department of Urology and Pediatric Urology, University Medical Center, Mainz, Germany.

Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.

出版信息

AJR Am J Roentgenol. 2020 Oct;215(4):903-912. doi: 10.2214/AJR.19.22573. Epub 2020 Aug 5.

Abstract

The purpose of this study was to evaluate in a multicenter dataset the performance of an artificial intelligence (AI) detection system with attention mapping compared with multiparametric MRI (mpMRI) interpretation in the detection of prostate cancer. MRI examinations from five institutions were included in this study and were evaluated by nine readers. In the first round, readers evaluated mpMRI studies using the Prostate Imaging Reporting and Data System version 2. After 4 weeks, images were again presented to readers along with the AI-based detection system output. Readers accepted or rejected lesions within four AI-generated attention map boxes. Additional lesions outside of boxes were excluded from detection and categorization. The performances of readers using the mpMRI-only and AI-assisted approaches were compared. The study population included 152 case patients and 84 control patients with 274 pathologically proven cancer lesions. The lesion-based AUC was 74.9% for MRI and 77.5% for AI with no significant difference ( = 0.095). The sensitivity for overall detection of cancer lesions was higher for AI than for mpMRI but did not reach statistical significance (57.4% vs 53.6%, = 0.073). However, for transition zone lesions, sensitivity was higher for AI than for MRI (61.8% vs 50.8%, = 0.001). Reading time was longer for AI than for MRI (4.66 vs 4.03 minutes, < 0.001). There was moderate interreader agreement for AI and MRI with no significant difference (58.7% vs 58.5%, = 0.966). Overall sensitivity was only minimally improved by use of the AI system. Significant improvement was achieved, however, in the detection of transition zone lesions with use of the AI system at the cost of a mean of 40 seconds of additional reading time.

摘要

本研究旨在通过多中心数据集评估一种具有注意力映射的人工智能(AI)检测系统在前列腺癌检测中的表现,与多参数 MRI(mpMRI)解读进行比较。该研究纳入了来自五个机构的 MRI 检查,并由九位读者进行评估。在第一轮中,读者使用前列腺影像报告和数据系统第 2 版(PI-RADS v2)评估 mpMRI 研究。4 周后,读者再次评估 AI 生成的检测系统输出和图像。读者可以在四个 AI 生成的注意力图框内接受或拒绝病变。框外的额外病变将被排除在检测和分类之外。比较了仅使用 mpMRI 和 AI 辅助方法的读者的表现。研究人群包括 152 例病例患者和 84 例对照患者,共有 274 例经病理证实的癌症病变。基于病变的 AUC 为 MRI 组的 74.9%和 AI 组的 77.5%,无显著差异( = 0.095)。AI 对所有癌症病变的整体检测敏感性高于 MRI,但未达到统计学意义(57.4%比 53.6%, = 0.073)。然而,对于移行带病变,AI 的敏感性高于 MRI(61.8%比 50.8%, = 0.001)。AI 的阅读时间长于 MRI(4.66 比 4.03 分钟,<0.001)。AI 和 MRI 的读者间有中度一致性,无显著差异(58.7%比 58.5%, = 0.966)。总体敏感性仅略有提高,而使用 AI 系统显著提高了移行带病变的检测,代价是平均增加 40 秒的阅读时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/8974983/2c329d8bd0cd/nihms-1784074-f0001.jpg

相似文献

引用本文的文献

10
The Lancet Commission on prostate cancer: planning for the surge in cases.《柳叶刀》前列腺癌委员会:应对病例激增的规划
Lancet. 2024 Apr 27;403(10437):1683-1722. doi: 10.1016/S0140-6736(24)00651-2. Epub 2024 Apr 4.

本文引用的文献

7
Cancer statistics, 2018.癌症统计数据,2018 年。
CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442. Epub 2018 Jan 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验