Suppr超能文献

脑缺血对海马区抗氧化酶活性和神经元损伤的影响。

The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus.

机构信息

Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.

Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.

出版信息

Cell Mol Neurobiol. 2023 Nov;43(8):3915-3928. doi: 10.1007/s10571-023-01413-w. Epub 2023 Sep 22.

Abstract

Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.

摘要

脑缺血及随后的再灌注导致特定脑区的血液供应减少,仍然是导致神经损伤、残疾和死亡的重要原因。在易损区域中,包括海马体在内的皮质下区域特别容易受到缺血性损伤,损伤的程度受到缺血不同阶段的影响。由于涉及自由基、氧化应激、炎症反应和谷氨酸毒性的复杂生化反应,神经组织会发生各种变化和损伤。这些过程的后果可能导致不可逆转的伤害。值得注意的是,自由基在缺血后的神经病理机制中起着关键作用,导致氧化应激。因此,缺血后抗氧化酶的功能对于防止氧化应激引起的海马损伤至关重要。本研究探讨了在缺血和再灌注的早期和晚期,海马神经元损伤和酶抗氧化活性。

相似文献

1
The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus.
Cell Mol Neurobiol. 2023 Nov;43(8):3915-3928. doi: 10.1007/s10571-023-01413-w. Epub 2023 Sep 22.
2
Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries.
Metab Brain Dis. 2018 Jun;33(3):765-773. doi: 10.1007/s11011-018-0185-7. Epub 2018 Jan 17.
4
Oxidative damage following cerebral ischemia depends on reperfusion - a biochemical study in rat.
J Cell Mol Med. 2001 Apr-Jun;5(2):163-70. doi: 10.1111/j.1582-4934.2001.tb00149.x.
5
Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus.
Eur J Pharmacol. 2006 Aug 14;543(1-3):40-7. doi: 10.1016/j.ejphar.2006.05.046. Epub 2006 Jun 3.
6
The role of the AMPK/ERK1/2 signaling pathway in neuronal oxidative stress damage following cerebral ischemia-reperfusion.
Tissue Cell. 2024 Aug;89:102472. doi: 10.1016/j.tice.2024.102472. Epub 2024 Jul 10.
9
The nitration of SIRT6 aggravates neuronal damage during cerebral ischemia-reperfusion in rat.
Nitric Oxide. 2024 Dec 1;153:26-40. doi: 10.1016/j.niox.2024.10.004. Epub 2024 Oct 5.

引用本文的文献

1
Factors Contributing to Resistance to Ischemia-Reperfusion Injury in Olfactory Mitral Cells.
Int J Mol Sci. 2025 May 25;26(11):5079. doi: 10.3390/ijms26115079.
2
Cadmium exposure and risk of pancreatic cancer: Systematic review and meta-analysis.
PLoS One. 2025 Apr 29;20(4):e0319283. doi: 10.1371/journal.pone.0319283. eCollection 2025.
3
Therapeutic effects of orexin-A in sepsis-associated encephalopathy in mice.
J Neuroinflammation. 2024 May 17;21(1):131. doi: 10.1186/s12974-024-03111-w.

本文引用的文献

1
Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update.
Nutrients. 2023 Feb 23;15(5):1107. doi: 10.3390/nu15051107.
2
Polyphenols as Potent Epigenetics Agents for Cancer.
Int J Mol Sci. 2022 Oct 3;23(19):11712. doi: 10.3390/ijms231911712.
3
Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke.
Biomedicines. 2022 Mar 1;10(3):574. doi: 10.3390/biomedicines10030574.
4
Haematological Indices and Antioxidant Enzyme Activity in Ghanaian Stroke Patients.
Biomed Res Int. 2022 Mar 3;2022:1203120. doi: 10.1155/2022/1203120. eCollection 2022.
7
Sod1 integrates oxygen availability to redox regulate NADPH production and the thiol redoxome.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2023328119.
8
Thioredoxin reductase as a pharmacological target.
Pharmacol Res. 2021 Dec;174:105854. doi: 10.1016/j.phrs.2021.105854. Epub 2021 Aug 27.
10
Role of NMDA Receptors in Adult Neurogenesis and Normal Development of the Dentate Gyrus.
eNeuro. 2021 Aug 5;8(4). doi: 10.1523/ENEURO.0566-20.2021. Print 2021 Jul-Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验