Suppr超能文献

利用从可见光到中红外范围的融合高光谱成像数据与机器学习方法自动识别图像材料的方法。

Methodological approach for the automatic discrimination of pictorial materials using fused hyperspectral imaging data from the visible to mid-infrared range coupled with machine learning methods.

作者信息

Capobianco G, Pronti Lucilla, Gorga E, Romani M, Cestelli-Guidi M, Serranti Silvia, Bonifazi G

机构信息

Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy.

National Laboratories of Frascati - INFN, via Enrico Fermi 54, 00044 Frascati, Rome, Italy.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Jan 5;304:123412. doi: 10.1016/j.saa.2023.123412. Epub 2023 Sep 14.

Abstract

Hyperspectral imaging represents a powerful tool for the study of artwork's materials since it permits to obtain simultaneously information about the spectral behavior of the materials and their spatial distribution. By combining hyperspectral images performed on several spectral intervals (visible, near infrared and mid-infrared ranges) through chemometric methods it is possible to clearly identify most of the materials used in painting (i.e., pigments, dyes, varnishes, and binders). Moreover, in the last decade, the development of machine learning algorithms coupled with comprehensive and continuously updated databases opens new perspective on the automatic recognition of pictorial materials. In this work, we propose a novel procedure to support the automatic discrimination of pictorial materials consisting in a mid-level data fusion on imaging datasets coming from two commercial hyperspectral cameras, in the 400-1000 nm and 1000-2500 nm spectral ranges, respectively, and a MAcroscopic Fourier Transform InfRared scanning in reflection mode (MA-rFTIR), in the 7000 to 350 cm (1428 nm - 28 μm) spectral range. The automatic recognition of 102 pictorial mock-ups from the fused data is performed by testing the performance of ECOC-SVM (error-correcting output coding and support vector machine) model obtaining a good predictive result with only few pixels that are confused with other classes. The methodology described in this paper demonstrates that an accurate paint layer multiclass recognition is feasible, and the use of chemometric approaches solves some challenges involving the study of materials.

摘要

高光谱成像技术是研究艺术品材料的有力工具,因为它能够同时获取材料光谱行为及其空间分布的信息。通过化学计量学方法,将在多个光谱区间(可见光、近红外和中红外波段)获得的高光谱图像进行组合,可以清晰地识别绘画中使用的大多数材料(即颜料、染料、清漆和粘合剂)。此外,在过去十年中,机器学习算法与全面且不断更新的数据库的发展,为绘画材料的自动识别开辟了新的前景。在这项工作中,我们提出了一种新颖的方法来支持绘画材料的自动鉴别,该方法包括对分别来自两台商用高光谱相机、光谱范围为400 - 1000纳米和1000 - 2500纳米的成像数据集进行中级数据融合,以及在7000至350厘米(1428纳米 - 28微米)光谱范围内进行宏观傅里叶变换红外反射扫描(MA-rFTIR)。通过测试纠错输出编码支持向量机(ECOC-SVM)模型的性能,对融合数据中的102个绘画模型进行自动识别,结果显示只有少数像素与其他类别混淆,预测效果良好。本文所述方法表明,精确的涂料层多类别识别是可行的,并且化学计量学方法的使用解决了一些与材料研究相关的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验